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1. INTRODUCTION

This report has been organized into six main sections.
Section 1 introduces and discusses the purpose of this report,
the research objectives, and pertinent background material.
Sections 2 through 4, discuss the sources of computational fluw
analysis error, suggest a procedure (developed during the course
of this investigation) for monitoring and locating these errors,
and demonstrate the error monitor procedure for a configuration
of engineering interest.

The contract investigation raised several issues regarding
the usage and generality of the error monitor. These issues were
addressed in a research effort conducted using Boeing Advanced
Systems (BAS) Independent Research and Development (IRAD) funds.
The results of these research studies are summarized in Section 5
and are included in their entirety in the Appendices.

The last section, Section 6, summarizes the status of the
research. Significant accomplishments, conclusions, and
recommendations are enumerated in this section.

The reader with limited time may wish to review the
Introduction and Research Status sections first (Sections 1 and
6). Sections 2 through 5 provide a more detailed discussion.
The Appendices contain the detailed technical information useful
as a starting point for further investigations of the error
monitors and procedures discussed in the body of this report.

1.1 Purpose of Final Report

This report summarizes the results of work performed under
the contract titled "Error Norm Guided Flow Analysis of Shock-
Wave/Boundary-Layer Interactions" contract number F49620-85-C-
0126 and a related follow-on IRAD study. Previous reports by
Forester (1986, 2/87, and 8/87) have documented preliminary
results and progress of the contract effort. Pertinent
information from these dicuments is also summarized in this, the
final contract report. The purpose of the contract was to
develop a grid selection and smoothing level guide for accurately
applying Navier-Stokes (NS) analysis to flow fields of
engineering interest. The guide indicates grid resolution
problems and is computed from data readily available in NS
solutions. The grid guide was formatted for graphical output.
An inlet design with a shock control aperture was chosen to
demonstrate the concept.

The contract results were encouraging, but raised several
questions on the usage and generality of the grid selection
guide. These questions included the usefulness of the guide for
algorithms other than the MacCormack explicit (used for the
contract study), the relationship between the guide and solution
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accl" acy, and the usefulness of the guide for a wide range of
grid levels. A follow-on IRAD study was conducted to address
these questions. In the follow-on study, additional grid
refinement work was performed, the generality of the error
monitor and extensions to other algorithms were investigated, and
the relationship between the error monitor magnitude and
truncation error levels was studied.

1.2 Research Objectives

The overall contract objective was to explore grid adjustment
guides for improving the accuracy of flow field analyses. To
accomplish this the following specific objectives were
identified:

o Develop and evaluate error norms as guides to grid
selection and smoothing level.

o Define and implement these error norms in a two-dimensional
(2D) NS code.

o Demonstrate and evaluate error norm usage with a NS
analysis of a 2D inlet.

This work was accomplished using MacCormack's explicit predictor-
corrector method with explicitly added numerical smoothing.

1.3 Background

Computational fluid dynamic (CFD) tools are needed to provide
flow field properties for the design of aircraft components. For
three-dimensional analyses, Paynter and Chen, and Anderson have
made considerable progress. Three dimensional CFD analyses are
currently used in the selection and design of test configurations
and full-scale configurations. Analysis also enhances the degree
of integration of the propulsion system with flight controls,
aircraft aerodynamics, and structural requirements. The proper
integration of these elements is the key to high performance
aircraft design.

When CFD is used to provide flow properties for a flow domain
of interest, algebraic approximations to the NS equations (or a
subset) are solved for the values of the dependent variables at
each point on a grid of points distributed through the domain.
Available computer speed and storage limit the number of points
at which the algebraic approximations to the NS equations (Finite
difference equations or FDEs) can be solved (for a given analysis
domain). Details of the flow in the domain are unknown prior to
obtaining a solution, and local regions with high gradients in
flow properties (such as shocks or shear layers) can occur and be
of critical importance to the performance of an aircraft
component. A coarse grid in a region of high local flow gradient
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can inadequately resolve these gradients and result in a high
local solution error, manifested as an oscillation in flow
properties near the high gradient region (dispersive error).
Dispersive error can be controlled to some degree at least
through the use of artificial dissipation (smoothing) in regions
of high flow gradient and coarse mesh. The selection of a grid
point distribution and smoothing levels to achieve a desired
level of solution accuracy are recognized as major problems in
the use of CFD for aircraft design support.

Flow field solution accuracy is a strong function of grid
density, grid placement and smoothing levels. Methods are needed
for controlling solution errors due to grid and for selecting
numerical smoothing levels. In general, simple and reliable grid
and smoothing criteria are unavailable although criteria have
been developed for specific algorithms and flow conditions. The
present effort explores criteria that may be more generally
useful for guiding grid adjustment and setting smoothing levels.

Work completed during an earlier contract (titled "Error Norm
Guided Flow Analysis", contract number F49620-84C-0037) was
summarized in a symposium paper and presentation (Forester and
Strom, 1985). These results dramatically illustrated the
sensitivity of solution results to grid placement and density.
Solutions were obtained for supersonic flow over an axisymmetric
conical afterbody with a blunt base containing a centered
propulsive jet. Comparisons were made between computed and
experimental results for base pressure, separation length,
afterbody pressure distribution, and flow field structure. The
numerical solutions were found to be sensitive to the
computational grid structure and the turbulence model. Error
norms were applied to aid the detection of inappropriate grid
choices. The best results were obtained with adaptive grids that
tracked both shear layers (i.e., due to the internal and the
external flow) and a turbulence model based on the local flow
features. The results of this work suggested that artificial
dissipation as defined for the MacCormack explicit algorithm
could be used as a guide to grid placement.

A variety of error norms were explored during the early phases of
this contract (Forester, 1986, 2/87, and 8/87). This early work
identified ADR (discussed in this report) as a viable error
monitor.

2. ERROR SOURCES AND SMOOTHING

When a computational fluid dynamic (CFD) analysis is
performed the objective is to solve a set of partial differential
equations (PDE) such that

PDE - o (1)
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Since most PDEs are too complex to be solved exactly it is
necessary to solve an approximation to the PDE. A common
approach is to solve a set of finite difference equations (FDE)
such that

FDE - 0 (2)

but

PDE - FDE + e (3)

Where c represents nonphysical source terms due to truncation,
residual and roundoff errors. This implies that the equations
actually being solved are

PDE - c (4)

Comparing Equation 1 with Equation 4 it is apparent that the
resulting solution (obtained by solving FDE - 0) contains errors
that are grid, convergence and machine dependent.

The flow field equations and their boundary conditions are
precise, exact and continuous. The process of numerically
simulating these equations is not precise, exact or continuous.
Numerical solutions of these field equations involve solving
equations which have additional properties that are not contained
by or related to the continuous equations. These additional
properties are characteristic of the algebraic structure (i.e.,
FDEs) used to model the continuous equations.

These additional spurious properties have been catagorized as
dispersive and dissipative behavior in the solutions. Examples
of spurious behavior are nonphysical mass sources and sinks;
negative density or temperature; and the decay of entropy or
increases in available total pressure. Dispersive errors result
in nonphysical oscillations or ringing in the solution to the
system of equations. Dissipative behavior is manifested by poor
acuity of steep gradients or by damped peak amplitudes of
dependent variables or their derived quai.tities. The combined
effect of dispersive and dissipative errors is often called
diffusion error. All numerical algorithms whether finite
difference, finite volume or finite element, have a truncation
error and thus an intrinsic diffusion unique to a particular
algorithm. In addition, artificial dissipation is often
explicitly added to an algorithm either to achieve solution
stability or to minimize undesirable dispersive errors near
regions of high gradients in flow properties. The combined
effect of the intrinsic diffusion and the explicitly added
artificial dissipation is referred to, in this report, as
artificial diffusion.

If the numerical solution is dispersive near a high gradient
region of the flow the effect of increasing the viscosity is to
reduce or eliminate (i.e., smooth) the local oscillations in the
solution. Conversely, reducing the viscosity accentuates the
oscillations. The dispersive numerical error is counteracted by
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the viscous dissipation (i.e., has an opposite effect on the flow
solution). Since the source term on the right hand side of
Equation 4 typically varies (both in magnitude and sign) from
point-to-point throughout the solution domain, judicious addition
of numerical viscosity (or dissipation) in the vicinity of the
high gradient region will reduce or eliminate the dispersive
error. In effect the source term implied by Equation 4 is
locally reduced or eliminated.

There is a difference in the magnitude of smoothing
requirements between linear and nonlinear regions of the flow
analysis domain. For example, regions of the flow featuring
shocks (nonlinear) require enormous smoothing levels. Since
shock-like discontinuities abound in large numbers during the
early stages of the convergence process, high levels of smoothing
are required in most of the flow analysis domain.

As the converged solution is approached, the smoothing levels
must be low except in shock regions and poorly resolved flow
regions that behave like discontinuities. These regions require
locally higher smoothing to avoid unacceptable dispersive errors.
Locally higher smoothing can however be an unacceptable
dissipative error. Complexity is inherent in the widely varying
demands for smoothing during the convergence process.

Artificial diffusion can smooth, stabilize and enhance the
10 convergence characteristics of NS solution algorithms such as the

MacCormack predictor-corrector scheme. This is done by
constructing a smoothing flux that is added explicitly to the raw
flux in the predictor-corrector cycles. The impact on the
solution accuracy of this smoothing operator, relative to grid
and residual effects, has not been well defined for the NS
equations. Model equation studies from the follow-on
investigation suggest that improvements in solution accuracy can
be obtained with this type of smoother.

The present study was aimed at investigating a variety of
error monitors including artificial dissipation to direct the
analysis process for achieving "good" grids -- those grids giving
solutions suitable for engineering application. Care was taken
to insure that the solutions were well converged and that
roundoff error was negligible. Therefore, the solution errors
discussed in this report are dominated by the truncation (i.e,
grid dependent) errors. The contract and follow-on studies were
focused on truncation error and smoothing effects (relative to
the truncation error).

3. ERROR MONITORS

During the contract new approaches to streamline and simplify
the process of selecting an analysis grid were explored.
Measures of solution error were investigated, including total
pressure error and the artificial diffusion ratio defined in the
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following paragraphs. Cross-correlation of these, plus other
error measures such as local and global conservation error, have
been examined to single out the best guides for selecting grid
and smoothing levels.

Many methods have been used to select the local level of
artificial dissipation or smoothing used to minimize dispersive
errors in a flow solution. These methods range in complexity
from a global increase in the bulk viscosity to flux corrected
transport (Oran and Boris, 1987). The MacCormack (1975) smoother
(described in section 3.1 below) senses two grid interval
solution oscillations (usually a dispersive error effect). The
artificial dissipation level is set at a "high" value if a
dispersive error effect is present. Because the MacCormack
smoother is designed to sense dispersive error, it can also be
used as a guide to grid adjustment.

Artificial smoothing (MacCormack method) and its effect on
the solution accuracy were examined in this study. Truncation
error is usually the dominant error source. The artificial
diffusion is monitored and utilized to select grid densities that
ensure accuracy of the analysis process. It is shown that the
artificial diffusion is large on inadequate or coarse grid
solutions where flow gradients are large. This information is
used to adjust grid density until the artificial diffusion is
minimized and an accurate solution is obtained.

A measure of the artificial diffusion is the ritio of the
explicit smoothing flux (computed with a MacCormack smoother) to
the total flux through computational cell faces. This ratio is
called the artificial diffusion ratio (ADR). By definition, this
ratio should be insignificant everywhere in the flow analysis
domain except in high gradient regions where the mesh is too
coarse. For example, shock waves and shear layers must have low
levels of artificial smoothing or small values of ADR relative to
the peak values of ADR. Coarse grid simulations lead to the
treatment of each of these continuous regions as singularities.

An ADR can be generated for each dependent variable of the
compressible time-averaged Navier-Stokes equations. The
dependent variables (in 2D) are two components of momentum, total
energy and mass density. These dependent variables result in
four artificial diffusion ratios -- ADRI, ADRG, ADRH and ADRR,
respectively. A composite of these individual error monitors may
be constructed by averaging the individual error monitors. All
error measures are normalized to achieve peak values not
exceeding unity.

The error measures that have been explored for the contract
are defined in the next section. Finite difference expressions
are used for this purpose.
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3.1 Mathematical Definition

The concept of error analysis for numerical approximations of
the NS equations can be illustrated using a model equation called
the Burgers equation. The generalized Burgers equation may be
written in a form consistent with the usual representation of the
NS equations as follows:

a_ + LE _ . (5)
t ax

where

au bu2u = u, E - F - a, F = cu + -2-- (6)

u is the velocity, p is the fluid viscosity, and c and b are free
parameters. Note that if b - 0, the linearized Burgers equation
results and if c- 0 and b- 1, the nonlinear Burgers equation is
obtained. If p - 0 the equation is inviscid and if b - 0 and u -
0 the familiar wave equation is recovered.

The finite-difference expression for MacCormack's explicit
predictor-corrector method with a "product" smoother is given by
(Anderson et al., 1984).

U n - t (0 n n) (n S (7)
i i - L i+1 i i+l i

n+l 1 n +3* at * * *

. T {~U + ix I (E. - E i _ii - 1 -]) (8)
where S represents the artificial dissipation flux at a point.
For the NS equations S is defined as

IP n  - 2P n + Pnan  (~ I -111 n9
S e (IulI + ai) 0 (9)

1 (P +2P. + Pn_

S• , IPi+l -2P + Pi_1I • •
S- £ (ui + a*) ( , , (Ui+ 1 - Ui) (10)(Pi (P + 2Pi + P-1

i+1 1

and 0 < e < 0.5

Note that when solving Burgers equation, the pressure, P, is
not a dependent variable and the speed of sound, a, is not a
solution parameter. Therefore, for Burgers equation, velocity is
used in place of pressure and the wave speed, c, is used in place
of "a" in the definition of the artificial dissipation flux.
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An additive artificial viscosity is thus defined as

Pa,i w c (Ax) r lu - 2u i + Ui-l (11)

(Iui + c)
where r - (ui+ 1 +2u +u. ) (12)

U il +2u + i-1)

The Ax is included in the definition of the artificial viscosity
so that S - Pa au/ax and is comparable to the viscous term p
au/ax contained in E. Also note that the sign on the smoothing
terms in Equations 7 and 8 have been selected so that they have
the same sign as the viscous term in E. This smoother is
triggered by oscillations in a numerical solution (a third order
or dispersive effect). A monatonic variation of u over the i-l
to i+1 grid interval results in a low value of Pai. A two grid
interval oscillation in u results in a high value of Ta~i. With
an appropriate setting for c the dissipation added by tfe
smoother will damp the third order dispersion error.

The artificial diffusion ratio, ADR, is defined as follows:

l(s - Sn )IADR 1+- (13)A(0 - E )I + I(0 - S3

Note that the magnitude of the added artificial smoothing
term is compared with the E/ax term such that ADR must range
between 0 and 1. This definition is for the predictor step. A
similar definition may be expressed for the corrector step, but
studies have shown that both definitions have essentially the
same characteristics. ADR based on the predictor step was used
for the present effort.

The ADR may be defined similarly for the continuity equation,
the two components of the momentum equation, and for the energy
equation. These quantities are called ADRR, ADRF, ADRG, and
ADRE, respectively.

3.2 Minimizing Errors

The equations of the previous section constitute a system of
unknowns whose range is determined by the number and distribution
of grid points. The number of grid points is chosen rather
arbitrarily until data is available on the truncation error.
Once this data exists, a systematic procedure for minimizing the
error using grid refinement may be followed. It is usually
desirable to distribute the grid so that the truncation error is
approximately uniform over the grid (using ADR as a guide).
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Once the grid distribution is arrived at, the accuracy of the
numerical approximation can be increased by increasing the number
of grid points. If this is done, a correlation emerges between
the truncation error and ADR. It is this correlation which is
critical to the viability of ADR as a useful error monitor.

4. TEST PROBLEM

To test the error monitors, an analysis problem was required.
It was desirable to select this problem to achieve accurate
computational solutions at a reasonable cost. High quality test
data was also needed so that comparisons could be made between
the computed and measured results. The inlet/aperture flow field
test problem was selected because the test data was of high
quality and because the geometry was two-dimensional. Two-
dimensional NS solutions on a number of grids were feasible for
the inlet within the available computer budget.

4.1 Geometry and Flow

A supersonic inlet throat region geometry and the flow
physics associated with an external compression inlet with throat
bleed flow is illustrated in Figure 1. The inlet/aperture
approach flow, parallel to the centerbody ramp, is at the throat
design Mach number of 1.28. The bulk of the flow in the
streamtube spanning the gap between the cowl lip and ramp crown
is captured by the inlet.

boundary
layer

Cowl

~Laminar
boundary ,

B ow shock =
*' )

Supersonic -I a)external Supersonic
flow Expansion

f Fe /- Slot shock• ,-Turbulent Free >

boundary 1shea\layer C3 ,e " nlet
channel

wall
Separation Bleed

point /chamber

surface Recirculation
region

Figure 1. Inlet-Aperture Flow Field Features
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Some spillage flow may occur at the cowl lip, depending on
the engine face flow and the bleed slot flow requirements. The
cowl generates a shock wave that is positioned upstream of the
lip and impinges on the ramp boundary layer downstream, but near
the crown of the ramp. The ramp shock-wave/boundary-layer
interaction is stabilized in this position by bleeding flow into
a slot opening in the ramp. This slot is downstream of the crown
of the ramp. The crown of the ramp generates an expansion fan
which locally accelerates the flow to a higher Mach number (=
1.7) before the flow arrives at the slot opening. These flow
physics generate a complex interaction of the cowl shock wave,
ramp boundary layer and the ramp crown expansion fan. These
interactions produce a free shear layer across the slot opening
which has strong viscous generated transverse velocity gradients
and strong local inviscid transverse velocity gradients in the
supersonic tongue. Further, this flow region is strongly
influenced by the slot geometry and amount of bleed flow. These
flow and geometry features generate higher gradients in flow
properties in the longitudinal direction. The locations of these
longitudinal contortions are dictated by the downstream lip of
the slot opening. This lip produces a strong shock wave (M1 =
1.7) in the slot region. it is a stronger shock than the cowl
shock with high local curvature. This curvature adjusts the flow
field in the neighborhood of the slot opening so that the
resultant flow downstream of the slot opening is subsonic to
match the static pressure of the remaining flow captured by the
inlet.

The slot shock and the shear layer interaction are sensitive
to the supersonic flow originating from the ramp crown. Flow
solutions near the slot were very sensitive to solution error.
Incomplete Prandtl-Meyer expansion in the numerical solution
dramatically reduces slot shock strength, and in the extreme
case, produces no slot lip shock. Over-expansion in the solution
leads to misdirecting the slot free-shear layer to the slot lip.
Either of these mismatches lead to incorrect slot pressure,
either too high or too low respectively. In turn, the slot flow
entrance separation point is affected dramatically by the
pressure in the bleed flow opening. The nature of the
recirculation flow field impinging upon the bleed entrance free
shear layer is subject to change according to the separation
point which induces feedback upon the bleed entrance pressure.
Experimental results for the inlet were thought to be sensitive
to experimentally undefined boundary conditions.

Turbulence in the bleed entrance and in the bleed cavity
affect the flow pressure at the bleed entrance. The ratio of the
length of the bleed flow opening and the thickness of the free
shear layer, plus the pressure gradient in the free shear layer,
influence the structure of the turbulence in the bleed cavity and
in the free shear layer. Favorable pressure gradients accelerate
the wall boundary layer at the crown of the ramp. Mixing zone
intensity is excited by adverse pressure gradients which prevail
between the bleed cavity and the supersonic flow regions.
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Feedback between the turbulence and the pressure field can cause
unsteadiness or instability of the flow at the bleed slot
entrance. The intensity of the mixing can be damped or amplified
by the unsteadiness. The mixing process may include at least
five types of flow:

1) nearly laminar flow of the wall boundary layer at the ramp
crown and downstream of the separation point,

2) transition to steady flow mixing between the fully
developed supersonic flow and the bleed cavity flow field,

3) possible vigorous flow mixing between the established
bleed flow opening free shear layer and the bleed cavity
flow field,

4) possible resonance phenomena of the free shear layer and

the bleed cavity flow field, and

5) fully developed mixing in boundary and free shear layers.

The occurrence of these types of flow phenomena depends upon
flow transition phenomena. Model scale inlets and full scale
inlets can have large differences in the location and streamwise
extent of transition. For the model scale inlet, examined in the
present study, only flow types 1, 2 and 5 have been identified.
Numerical experiments indicate that only type 5 flow dominates
the wall boundary layers and free shear layers.

4.2 Computational Approach

The computational approach in the present study is an
extension of the work of Peery and Forester. It uses a
conservation-based body-fitted adaptive grid model of the thin-
shear-layer formulation of the compressible, Reynolds-averaged,
Navier-Stokes equations together with mass and energy
conservation equations.

Control of the residual errors is achieved, by an artificial
time relaxation approach with a constant CFL criteria. Steady
state is achieved by asymptotic time relaxation. Truncation
errors are reduced through the use of solutions on varying grid
densities and varying grid distributions. The formulation of (a)
the governing thin-shear-layer equations, (b) the finite volume
explicit predictor-corrector finite difference algorithm, (c) the
boundary conditions, (d) the two-layer algebraic turbulence model
with its associated wall functions, and (e) the mesh generator
and the adaptive mesh mover are detailed by Campbell and Forester
(1985) and the associated references. The procedure for design
application of this code is given by Campbell et al. (1984).

The computer program allows three coupled computational
regions. In the present study, computational region one (see
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Figure 2) is the slot cavity flow region, region two is the
ramp/cowl/engine-face flow region, and region three is the region
above the cowl. The grid blocks have point and slope continuity
at each interface. This simplifies the boundary condition
treatment needed at the surface of grid blocks. Freestream
boundary conditions are specified on the left side of regions two
and three. The grid is body-fitted to the ramp, slot, and cowl.
As shown in Figure 2, the length scales of the grid intervals

vary widely over the analysis domain. The smallest grid
intervals are generally located in critical regions as follows:

o boundary layers,

o free shear layers,

o rapid compression/expansion regions,

o shocks, and

o stagnation regions.

To simplify the notation for grid size definition, grid sizes
are defined by a cluster of numbers separated by commas. The
numbers between the commas are the interval counts in x by y
directions of the grid in region 1, region 2 and region 3,
respectively. The grid sizes employed are (10x5, 27x17, 22x12),
(21x10, 54x34, 44x24), and (42x18, 106x66, 46x26). These three
grid sizes are labeled coarse, medium and fine, respectively.
The influence of grid on resolution is considered relative to
accuracy produced by pairs of grids (coarse/medium, coarse/fine,
medium/fine.) only the coarse and fine grid results are shown.

Region 3. (46 x 26)

Region 1. (42 x 18)

Analysis Domain Slot Region

Figure 2. Fine Grid
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4.3 Computational Results

Many parameters could be studied to explore error norm
guides. The parameters selected for this study were the total
pressure, artificial diffusion ratio, and Mach number. All of
these parameters except for the artificial diffusion ratio are
traditional parameters for error assessment. The artificial
diffusion ratio is shown in conjunction with the Mach contours
and does not replace these because physical features simply are
not revealed by the artificial diffusion ratio. In fact, the
artificial diffusion ratio should be void of physical features
except near shocks. Mach contours show physical features
including shocks.

Figures 3 through 7 relate solution accuracy to smoothing
coefficient level and to grid placement through test data
comparisons. Figure 1 shows the traverse station for the total
pressure ratio, Pt/Pt=, in the throat region of the inlet.
Figure 3 shows the improvement in the total pressure with respect
to grid refinement and with respect to reducing the artificial
smoothing.

See Figure 1. for Transverse Station
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Figure 3. Total Pressure Ratio in Throat Region
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Note that the degradation of the total pressure results from
excessive smoothing or from too coarse a grid. Also note that
the results improve with respect to grid refinement even with
abnormally high smoothing coefficients. Ultimately grid
refinement is the critical issue. However, the efficiency of
using a particular grid is improved by setting smoothing
coefficients near the stability limit, rather than to maximize
convergence. Further examples of this behavior are now
discussed.

Figures 4 through 7 are comparisons of solution results for
selected grids and smoothing coefficients. Figures 4 and 5 show
the effect of smoothing level on ADR for coarse, and fine grids,
respectively. Figures 6, 7, and 8 are Mach number contours.
Figures 4 and 5, and Figures 6 and 7 show the effect of grid
density. Comparison of Figures 4 and 5 with Figures 6 and 7 show
that ADR rises sharply with increased smoothing levels and with
increased grid coarseness. Note that when ADR is above 0.01
(except for shocks where ADR should be about 0.01), too high a
smoothing level or too coarse a grid is indicated. In these
regions, the grid must be refined or the smoothing level must be
reduced.

It is possible to generate a composite effect of all of these
error sources on a particular grid. The grid used for this
purpose is shown in Figure 2. Figure 8 shows an example of Mach
number contours for the aperture region. Note the agreement
between the shadowgraph of the flow field for an experimental
test of this inlet and the predicted result for the same flow
field (Figure 8).
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Figure 4. Coarse Grid Artifical Diffusion Ratio Contours
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5. RELATED RESEARCH

Because of the promising nature of the contract results, a
follow-on study was conducted to address several remaining
questions. The follow-on study was performed with BAS IRAD
funds. In particular, the questions addressed were as follows:

o Does the directionality of ADR (i.e., the u and v momentum
ADR, ADRF and ADRG) provide guidance to the direction of
the required grid refinement?

o Since the previous results indicate some error still exists
between the predicted and measured total pressures, can
grid refinements, that achieve the suggested ADR levels,
reduce this error?

o Is ADR useful for algorithms other than the MacCormack
explicit algorithms studied thus far? Specifically, is ADR
useful for the Beam-Warming algorithm used in the popular
ARC NS codes (Pulliam, 1984' and the PARC NS codes (Cooper,
1987)?

o What is the relationship between ADR magnitude and the
solution error magnitude?

o Can ADR be used with algorithms that use intrinsically
added smoothing such as the MacCormack implicit algorithm
(MacCormack, 1985)?

The usefulness of ADR to guide grid adjustment in a grid
direction (directionality) and the question of whether grid
adjustment for the inlet problem to reduce local ADR levels would
improve agreement between the computed and measured flow
properties were addressed by continuing the contract study
approach - application of the NS analysis to the inlet test
problem. Work and results from this are reported in Section 5.1
below. The usefulness of ADR for other algorithms and the
relationship between ADR and solution accuracy, were addressed
through model equation studies using Burgers equation as an
analog to the NS equations. Work and results from this are
reported in Section 5.2.

5.1 ADR Directionality and Grid Refinement

Additional grid refinement work was performed for the test
case, discussed in Section 4.3, using BAS IRAD funds (Baltar,
1988). Details of this study are included in Appendix A and are
summarized in this section. The ADR measures were used to guide
this grid refinement study.
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During the contract effort ADR was identified as a useful
parameter for guiding grid refinement and establishing solution
accuracy. The objective of the IRAD effort summarized in
Appendix A was to investigate if ADR is a useful guide for
localized grid refinement of a complex flow field analysis.
Improvement in flow prediction was evaluated by comparing the
calculated total pressure with experimentally measured total
pressure in the throat region. Regions of high ADR were shown to
be reduced in size when more mesh was added in the direction
normal to the gradient or in a way to reduce the cell aspect
ratio of the mesh. The agreement between computed and
experimentally measured total pressure profiles improved about 2%
when the recommended levels of ADR were achieved throughout the
computed flow field. The remaining disagreement could be caused
by improper ADR thresholds, improper geometry resolution, or by
experimental uncertainties. Preliminary results from
investigation into the use of ADR to determine the direction of
the required grid refinement were promising but additional study
is needed.

During the course of this study a valuable graphical
technique for using ADR to guide grid refinement was developed.
Figure 9 is a representative ADRE contour plot. Note the three
color bands. Since ADR thresholds of 0.01 and 0.001 were being
evaluated the color bands represent regions where the ADR is
greater than 0.01 (the red band), between 0.01 and 0.001 (the
yellow band), and less than 0.001 (the green band). The
procedure for using these plots is to refine the grid in the red
and yellow regions first. The green regions were assumed to have
an adequate grid density. Once the majority of the flow domain
had relatively low ADR values (illustrated by the large green
region in Figure 9) the agreement with the data was good. As
shown in Figure 10, the agreement between the predicted and
measured total pressures in the throat region are within 2% and
for much of the traverse the agreeme..t is nearly perfect. Also
note the crispness of the shock definitions in the Mach contour
plot.

5.2 Model Equation Studies

Two problems were evident with continuation of the contract
approach addressing the usefulness of ADR for other algorithms
and establishing the relationship between solution error and ADR.
First, exploring the usefulness of ADR with other algorithms was
too complex to be practical (in the context of the short term
follow-on study) ujing solutions of the NS equations. Second,
establishing the level of accuracy of solutions to the NS
equations is difficult because analytic solutions do not exist
for cases of interest. Use of experimental results to represent
an analytic (exact) solution to the NS equations is dangerous
because of experimental uncertainties.
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The approach selected for the follow-on study was as follows:

o Use Burgers equation as a simple analog of the NS
equations.

o Solve Burgers equation using the MacCormack and the Beam-
Warming algorithms both with and without artificial
dissipation modeling.

o Establish the accuracy levels of the numerical solutions
through comparisons between analytic and numerical results.

o Complete modified equation analyses of the MacCormack and
Beam-Warming FDE approximations to Burgers equation to
address why ADR might be a measure of solution accuracy.

The advantages of this approach are that Burgers equation is
recognized as an analog to the NS equations, analytic solutions
are available to Burgers equation so that the accuracy of the
numerical solutions can be established without ambiguity, the
MacCormack and Beam-Warming algorithms are currently the most
popular explicit and implicit methods, and programming the two
methods is simple enough to be practical within the timeframe of
a short study. Further, while a successful result with ADR in
the follow-on study doesn't guarantee the success of using ADR
with the NS equations, failure would make success with the NS
equations improbable. Success here is defined as establishing a
relationship between ADR and solution error and demonstrating the
usefulness of ADR for the Beam-Warming and MacCormack algorithms.

5.2.1 Model Equation Analysis

Using Burgers equation as an analog to the NS equations,
modified equations were developed for the linear viscous Burgers
equation for both the MacCormack explicit method (used for the
present contract work) and the Beam-Warming implicit method (used
in other popular NS codes such as ARC and PARC). The details of
this portion of the follow-on IRAD study (Paynter, 1988) are
included in Appendix B and are summarized below.

The modified equation is the finite difference expression
written as a sum of the partial differential equation and the
truncation error with the lead time derivative terms in the
truncation error replaced by spatial derivatives through a
manipulation of this equation. Modified equations were developed
for the linear viscous Burgers equation for both the MacCormack
explicit and the Beam-Warming implicit algorithms. It was found
that the lead truncation error term with the MacCormack algorithm
is dispersive and that the lead term with the Beam-Warming
algorithm is dissipative.
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The artificial diffusion is in effect a source term added to
the PDE being solved. The magnitude of the source term is at
least a qualitative measure of the dispersive solution error.
Because of the non-linear nature of the flow equations, a
quantitative relationship between solution error and ADR was not
established. A quantitative relationship between solution error
and ADR would be algorithm and problem dependent due to the
differences in the lead terms of the truncation error from
algorithm to algorithm. This is supported by the computed
resulls of Section 5.2.2. The artificial diffusion should be
less useful for algorithms with high intrinsic dissipation since
ADR is insensitive to intrinsic dissipation effects. It seems
clear that a quantitative relationship between artificial
diffusion and solution accuracy would be algorithm and problem
dependent.

5.2.2 ADR as a Measure of Error Magnitude

Comparisons between analytic and CFD solutions of Burgers
equation for a range of qrids for the Beam-Warming and MacCormack
algorithms were studied as part of the follow-on IRAD study
(Mayer, 1988). The details of this are reported in Appendix C
and the results summarized below.

SO ,  o solution accuracy is not simply related to ADR thresholds,

o ADR is useful for defining grid regions that require
refinement, and

o ADR is less useful in defining regions of high grid error
for the Briley-McDonald algorithm (which is equivalent to
the Beam-Warming algorithm when applied to Burgers
equation) than for the MacCormack explicit algorithm.

The computer program developed for this follow-on study
(Appendix D) could be readily adapted for other algorithms,
including those with intrinsic dissipation. Modified equation
analyses could be performed to define the lead truncation error
terms for other algorithms and model equations. Analytic
solutions could be used to directly evaluate these error terms.
A detailed study of these error terms relative to the definition
of ADR should provide valuable insight and guidance to using ADR
for assessing solution accuracy.

6. RESEARCH STATUS

Several significant accomplishments and conclusions have
resulted from the contract effort and associated Boeing Advanced
Systems (BAS) independent research and development (IRAD) funded
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research. In addition, the promising results from the current
work suggests additional research to develop the error monitor,
the artificial diffusion ratio (ADR), into a tool useful for
general purpose CFD applications. These accomplishments,
conclusions and recommendations are discussed in the following
sections.

6.1 Significant Accomplishments

The solutions of the flow field in the aperture region of an
external compression inlet with bleed and spillage flow by
Navier-Stokes analysis were obtained on a variety of grids and a
new approach was explored to guide grid adjustment. Measures of
numerical errors in the analysis process were explored including
ADR for mass, energy, and momentum. Correlation of these error
measures show that ADR provides guidance for grid and smoothing
level selection. The application of ADR leads to a grid choice
that yields an adequate solution to the flow field. Comparison
of this solution with experimental data shows good agreement.
The promising contract results led to a follow-on IRAD study to
further explore the usefulness of ADR as a guide to grid
adjustment.

In the follow-on study, the usefulness of ADR was further
explored for the inlet test problem on a variety of grids. The
applicability of ADR to other algorithms and the relationship
between ADR and solution accuracy were explored in model equation
studies. The inlet studies resulted in a new procedure for
graphical display of the ADR data and some work toward
establishing the usefulness of ADR to guide grid adjustment in a
given direction.

Modified equations were developed for the linear viscous
Burgers equation for both the MacCormack explicit and the Beam-
warming implicit algorithms. This development clearly
illustrates the nature of the lead truncation error terms for
these algorithms. The nature of these terms indicate how ADR
detects solution errors for MacCormack's explicit method. In
addition, the mathematical development of these terms makes it
feasible to directly evaluate the magnitude of these errors for
test problems that have analytic solutions.

Analytic and CFD solutions on a range of grids were obtained
for the viscous Burgers equations for both the Beam-Warming and
MacCormack implicit algorithms. Comparisons between the analytic
and CFD results were useful in establishing the relationship
between solution accuracy and ADR for a given algorithm. The
computer program written for the model equation studies could be
easily extended for the study of other algorithms.
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6.2 Conclusions

The major conclusions drawn from the research are as follows:

o The use of ADR to pinpoint grid problems has been
demonstrated. Regions of the flow where the grid is too
coarse to accurately capture gradients results in noise or
ringing in the solution. This noise is dispersive in
nature, and when using a MacCormack smoother, results in
correspondingly high values of ADR. Therefore, regions of
the flow that have relatively high levels of ADR are
candidates for further grid refinement.

o Solution accuracy is improved and the high ADR values are
reduced by performing localized grid refinement based on
the location of high ADR values.

o ADR thresholds as direct measures of solution accuracy have
not been established. There does exist a correlation
between ADR and solution accuracy, but the correlation is
more complex than a simple one-to-one relationship.
Achieving a given level of ADR does nct guarantee a given
accuracy level. This relationship is thought to be
algorithm and problem dependent.

o ADR does not pinpoint regions of grid error as well for the
Briley-McDonald method (comparable to the Beam-Warming
method for the 1D Burgers equation). The regions of high
ADR cover a greater extent than the regions of relatively
high solution error. This means that ADR for the Briley-
McDonald method exaggerates the extent of regions that
require grid refinement.

o The lead truncation error term is dispersive for the
MacCormack algorithm and is dissipative for the Beam-
Warming algorithm. In addition, an intrinsic third order
dispersive error term exists for the Beam-Warming
algorithm.

o The artificial dissipation acts as a source term added to
the partial differential equation being solved. For
algorithms with high dispersive error the artificial
dissipation is a qualitative measure of solution accuracy.

o Artificial dissipation is less useful for algorithms with
high intrinsic dissipation.

o A quantitative relationship between artificial dissipation
and solution accuracy is algorithm and problem dependent.
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6.3 Recommendations

Further work is recommended for demonstrating the utility of
ADR as follows:

o The results of the modified equation analysis of the
MacCormack explicit and the Beam-Warming implicit
algorithms (Paynter, 1988, Appendix B) makes it feasible to
directly evaluate the lead truncation error terms for an
analytic solution. A detailed study of these terms
relative to the present (or alternate) definitions of ADR
should provide valuable insight and guidance to using ADR
for assessing the solution accuracy of these algorithms.

o The extension to solution algorithms that use intrinsic
smoothing (i.e., not added explicitly) has not been
demonstrated. The computer program written for the present
study (Appendix D) may be readily adapted to explore the
use of ADR for these and other algorithms.

o Additional test problems should be investigated to evaluate
the use of ADR (for algorithms studied with the above
methods) for flows with different flow field
characteristics (i.e., flow separation, without shocks,
inviscid, laminar, etc.). These test problems should be
performed for configurations with high quality experimental
data suitable for CFD validation.

o The utility of ADR should be tested for other design
analyses of aircraft components (both model scale and full
scale).
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APPENDIX A:
Artificial Diffusion Ratio (ADR) Guided Grid Refinement Study

by
JY Baltar

1. Summary

Forester and Tjonneland (1988) identified the artificial diffusion ratio
(ADR) as a useful parameter for guiding grid refinement and establishing
solution accuracy. Global grid refinement and artificial viscosity levels
were studied in their paper. The objective of this appendix is to
investigate if ADR is a useful guide for localized grid refinement of a
complex flow field analysis. Improvement in flow prediction is evaluated by
comparing the calculated total pressure with experimentally measured total
pressure in the throat region. Regions of high ADR are shown to be reduced
in size when more mesh is added in the direction normal to the gradient or in
a way to reduce the cell aspect ratio of the mesh. The agreement between
computed and experimentally measured total pressure profiles improved about
2% when the recommended levels of ADR were achieved throughout the computed
flow field. The disagreement that remains may be caused by improper ADR
thresholds, improper geometry resolution, or by experimental uncertainties.
Preliminary investigation into the use of ADR to determine the direction of
the required grid refinement looks promising but more study is needed.

2. Introduction

This appendix documents the work performed using ADR to guide a grid
refinement study on the inlet-aperture problem analyzed by Campbell and
Forester (1985). The previous work (performed by PS Hertel of Boeing
Computer Services and CK Forester) studied the changes in ADR during global
grid refinement and artificial viscosity level studies on this inlet flow
field. The results were reported by Forester and Tjonneland (1988).

The geometry and flow field features for the inlet-aperture case analyzed
are shown schematically in Figure A-i. The approach flow parallel to the
ramp surface is at a Mach number of 1.28. A cowl shock wave is established
which impinges on the ramp boundary layer near the crown of the ramp. The
ramp boundary-layer/shock-wave interaction is stabilized in this position by
bleeding flow into a slot opening in the ramp. The crown of the ramp
generates an expansion fan which locally accelerates the flow before the flow
arrives at the slot opening. The downstream lip of the bleed slot opening
produces a strong shock wave so that the resultant flow downstream of the
slot is subsor c to match the static pressure of the remaining flow captured
by the inlet. This highly complex flow region with normal shocks, rapid
expansions, and strong shear layers presents a challenging problem for CFD
analysis.
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A new approach was introduced by Forester and Tjonneland (1988) to aid in
guiding grid refinement studies. The parameter used to guide the grid
refinement is ADR. ADR is defined as the ratio of the artificial smoothing
flux to the total flux through computational cell faces. Values of ADR of
0.01 or less in shock waves and values of ADR of 0.001 or less for smooth
flow regions were recommended by Forester (1987). The goals of this study
were to 1) achieve the recommended levels by locally adding grid points where
the ADR was high to see if the computed flow solution could be brought into
agreement with experiment; and 2) to determine if the directionality of ADR
could be used to guide the x- versus y-direction grid refinement.
Improvement in flow prediction was evaluated by comparing the calculated
total pressure with experimentally measured total pressure in the throat
region. Since experimental uncertainties exist, perfect agreement with the
data was not expected. The data does provide valuable indications of grid
related errors.

As described by Forester and Tjonneland (1988), ADR can be generated for
each dependent variable of the flow equations that are solved by the CFD
code. For this study, the ADR for the energy equation and the two momentum
equations were calculated and analyzed to determine if they could be used to
determine where and in which direction the grid needed refinement. These
ratios were labeled ADRE (energy), ADRF (streamwise momentum) and ADRG
(normal momentum) after the standard names for the flux vectors in the 2D
Navier-Stokes equations.

3. Results and Discussion

Figure A-2 shows a color contour plot of ADR for the energy equation
(ADRE) with the grid overlayed. This data is from the final fine grid/low
smoothing result shown by Forester and Tjonneland (1988). This case will be
called the Reference Case for the remainder of this discussion. Table A-1
gives some pertinent information about this case and about the other cases
discussed in this appendix. In Figure A-2, the areas in which ADRE is above
the threshold of 0.01 are colored red while the regions in which ADRE is
between 0.001 and 0.01 are colored yellow. The regions of the flow field
which are below the threshold of 0.001 are colored green. This color scheme
is used throughout this appendix since both ADR thresholds may be shown on
one plot. The ADRF and ADRG color contour plots for this case are shown in
Figures A-3 and A-4.

Figure A-5 shows a plot of the total pressure profile from this CFD
solution compared with the experimentally measured values. The total
pressure measuring plane is about 0.012 meters or 12 nodes downstream of the
bleed slot lip and is perpendicular to the wall of the constant area section
of the duct (see Figure A-i). The agreement between the CFD prediction and
experiment is fair considering the complexity of the flow field. However,
several regions of the flow indicate a need for improvement to accurately
predict the local total pressure. Notably, the region between 0.0075 and
0.03 meters from the lower wall (which is strongly influenced by the
expansion-fan/shock-wave interaction) shows a disagreement of as much as 4%.
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During this study, several refinements were made to the grid that is
shown in Figure A-2. Since the 0.01 threshold regions for the Reference Case
(Figures A-3 and A-4) were larger for ADRG than for ADRF, the initial grid
refinements were made by adding more mesh in the y-direction (normal to the
flow). This was accomplished while holding the near wall cell height
constant so the maximum cell height at the center of the duct was reduced
significantly. For this grid refinement, 24 cells were added in the y-
direction in two steps for a total of 90. The results for this case (Case
la) are shown in Figures A-6, A-7 and A-8. Figures A-6 and A-7 show that the
0.01 threshold regions in the cowl and slot shocks were almost removed and
the 0.001 threshold regions in the smooth flow regions (particularly in the
expansion from the upstream end of the bleed slot) were reduced
significantly. Figure A-8 shows that the flow field total pressure profile
comparison is improved so that the maximum disagreement is now less than
about 2%. This improvement can be attributed to the increased resolution in
the region of the expansion and the shock wave/expansion interactior. The
increased resolution in this region is primarily due to the fact that the
cell aspect ratio was reduced to near unity in a region with strong gradients
diagonal to the mesh.

A further refinement in the y-grid, called Case 1b, brought the total
number of cells in the y-directlon to 132 which is double the amount used in
the Reference Case. As shown in Figure A-9, the 0.001 threshold regions of
ADRE in the two shocks were reduced slightly for Case Ib, but the peak ADR
.alues in the shocks (near the 0.01 threshold) increased slightly. The
extent of the region of large disagreement in the total pressure profile was
reduced as shown in Figure A-10, but the largest disagreement has increased
to approximately 3%. Some noise is starting to contaminate the solution noar
the top wall which is indicated by the high ADRE region and the noise in the
total pressure profile. This noise is probably caused by the large cell
aspect ratios in that region.

Since grid refinement in the y-direction did not eliminate the regions of
high ADR and total pressure disagreement, an attempt was made to refine the
grid in the streamwise (x) direction. The upstream (left) boundary was moved
closer to the bow shock by reducing the mesh stretch factor to the left of
the cowl lip, thereby increasing the number of points in the bow shock.
Twelve equal spaced mesh points were also added just downstream (to the
right) of the bleed slot lip to increase the resolution at the downstream end
of the slot shock. Figure A-li shows the ADRE contours for this case (Case
2) with the overlayed grid. This grid includes r'finement of the grid in the
streamwise direction and the same y-direction grid as was used for Case la.
As shown by the ADRE contours, significant reductions were made in the ADRE
greater than 0.001 threshold regions downstream of the slot shock. However,
a comparison of the total pressure profiles with and without the x-direction
refinements (Figure A-12) shows that the agreement with the measured data is
not improved significantly. Significant reductions in the noise near the
upper wall did occur (indicated by the reduced ADRE in this region) since the
cell aspect ratio was decreased by the additional x-direction mesh.
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The Case la results shown in Figures A-6 and A-7 were reviewed again
since the refinements to the grid in the streamwise direction did not produce
significant improvements in the total pressure profile. These ADR contour
plots indicated a large region of high ADR in the bleed chamber. Therefore a
run was made with the grid in the bleed chamber increased fri 42 x 18 cells
to 51 x 26 cells. Color contour plots from this run (Case 3) showed a
significant reduction in ADR in the bleed chamber, but almost no change in
ADR contours in the inlet region. The total pressure profile from this run
(shown in Figure A-13 compared with Case la) showed some changes in the
boundary layer near the lower wall, but the disagreement between y = 0.0075
and 0.03 meters did not change.

To investigate the convergence effects on ADR contours and total pressure
profiles, the Reference Case was restarted and run an additional 20,000
cycles. This case (Case 4) had then completed the same number of cycles as
was completed for Case la. A comparison of the ADR contours from the
Reference Case and Case 4 showed that ADR did not change significantly with
the additional cycles. However, as shown in Figure A-14, the additional
20,000 cycles has resulted in a more fully developed boundary layer profile
downstream of the bleed slot thus reducing the maximum disagreement in the
total pressure profile to about 3%. Figure A-15, which compares the results
from Case la with Case 4, shows that the effect of the additional 24 y-
direction cells on the total pressure profile at the same number of cycles is
to reduce the maximum disagreement by about 1%. This convergence study shows
that of the 2% improvement in total pressure claimed in Figure A-8, about 1%
is due to the increased y-direction grid and the other 1% is due to
convergence in this part of the flow field.

Examination of the ADRE contours relative to mesh density indicated that
ADRE was high in regions where the grid was too coarse to properly resolve
the gradients in the flowfield. Refinements to the grid in the direction
normal to the gradients produced the greatest reductions in ADRE. In regions
of the flow field where the steep gradients are diagonal to the mesh,
refinement was required to achieve cell aspect ratios close to unity. If the
cell aspect ratio was near unity and ADRE remained high, refinements to the
grid were required in both directions.

A study of the change in the predicted total pressure profiles as
compared to the measured total pressure profiles showed that satisfying the
recommended ADR thresholds was not sufficient to guarantee an accurate
solution. This is consistent with one conclusion of Appendix C which says
that there is not a direct correlation between peak ADR level and solution
accuracy. The disagreements that remain could also be caused by
uncertainties in the experimental measurements, uncertainties in the
numerical boundary conditions, or by improper geometry resolution at both
ends of the bleed slot.

A comparison of the simultaneous changes in ADRF and ADRG for these grid
changes was made. In regions of the flow field where the steep gradients
were diagonal to the mesh and the cell aspect ratio was large, a high ADRF or
ADRG would indicate that mesh refinement was needed in the direction normal
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to the velocity component used to calculate ADR. For example, in the
expansion region in Figure A-3, ADRF (streamwise momentum) was high
indicating that normal (y) direction mesh was needed to make the cell aspect
ratio closer to unity. This effect was also seen for high ADRG regions and
streamwise direction refinements. In regions of the flow field where the
gradients were aligned to the mesh, all three ADRs tended to be near the same
level, so direction for grid refinement could not be inferred solely from
ADRF and ADRG.

4. Conclusions and Recommendations

The use of ADR to guide the localized grid refinement for a very complex
flow analysis has been shown in this study. The regions of the flow field
where the grid was too coarse to properly resolve the flow gradients produced
high values of ADR. The high ADR values were reduced and the solution
accuracy improved when more mesh was added.

The use of ADR thresholds as a quantitative measure of solution accuracy
has not been shown in this study. As the ADR levels were reduced to the
recommended levels, the predicted total pressure profiles were brought into
better agreement with the experimental results, however, some disagreement
remained between the computed and measured total pressure profiles. This
conclusion is consistent with the conclusion of the Appendix C study of ADR
for a iD model equation.

For this study, the experience of the CFD user was utilized to determine
U. that the high ADRE regions could be reduced by adding mesh in the direction

normal to the gradient or in a way to reduce the cell aspect ratio. It would
be advantageous to develop guidelines using ADR that could be given to novice
CFD users or could be programmed into an adaptive mesh generator. The
investigation into using ADRF and ADRG to guide the grid refinement direction
showed promise, but additional research is required.

Several recommendations for continuing work on this problem are:

1) Add more x-direction mesh in the bleed-slot lip shock region.
This can be accomplished with the current mesh generator but
has not been performed at present due to time constraints.

2) Use an elliptic mesh generator, preferably with multi-block
capability, to better define the geometry at both ends of the
bleed slot and at the cowl lip.

3) Demonstrate the use of ADR on other test problems and with
other codes.
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APPENDIX B:

Modified Equation Analyses for Spatial Truncation Error Effects
in Numerical Solutions of Burgers Equation

by
GC Paynter

1. Summary

The contract effort resulted in the identification of an error monitor,
the artificial diffusion ratio, useful for guiding grid adjustment and
establishing solution accuracy. A follow-on IRAD study was completed to
explore the use of ADR for algorithms other than MacCormack's explicit and
to establish a relationship between the ADR level and solution accuracy.
The follow-on study used Burgers equation as an analog to the NS equations.
As part of this, modified equations were developed for the linear viscous
Burgers equation for both the MacCormack explicit and the Beam-Warming
implicit algorithms. The modified equation is the finite difference
equation written as a sum of the partial differential equation and the
truncation error with the lead time derivative terms in the truncation
error replaced by spatial derivatives through a manipulation of this
equation. The modified equation portion of the follow-on study is reported
below. It was found that the lead truncation error term with the
MacCormack algorithm is dispersive and that the lead term with the Beam-
Warming algorithm is dissipative.

2. Introduction

In Computational Fluid Dynamics (CFD), algebraic approximations to the
Navier-Stokes equations (or a subset) are solved for the values of the
dependent variables at each point on a grid of points distributed over a
flow domain of interest. Defining,

PDE = Partial Differential Equation

FDE = Finite Difference Equation

TE = Truncation Error

Then PDE = FDE + TE

Since it is usually assumed that

FDE = 0,

This implies that we are actually solving,

PDE = TE

Solving the FDE = 0 is thus equivalent to solving the PDE with a
nonphysical source term equal to the truncation error.

Truncation error effects can be classified as dissipative, dispersive,
or diffusive, as discussed in Anderson, et al. (1984). The truncation
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error can be derived from the FDE by substituting Taylor series expansions
about a point for the dependent variable values at neighboring points
appearing in the FDE. Dissipation, associated with the even derivative
terms in the truncation error expression, acts like an "artificial
viscosity" to reduce all gradients in dependent variables in the solution.
Dispersion, associated with the odd derivative terms in the truncation
error, acts to distort the predicted values of dependent variables in the
vicinity of wave fronts (like shocks). The combined effects of dissipation
and dispersion are referred to as diffusion.

In addition, it is common to introduce explicit "artificial viscosity"
into the solution to control dispersive error effects. The problem with
this is that adding artificial dissipation to eliminate dispersion
introduces a dissipative error of unknown magnitude and thus it has an
unknown effect on solution accuracy. The work reported in this appendix
addresses the relationship between ADR and solution accuracy through
modified equation analyses of the MacCormack and Beam-Warming
approximations to the linear Burgers equation.

The remainder of this appendix consists of sections on Burgers
equation, the modified equation analyses, a discussion of results, and
conclusions. Numerical solutions to Burgers equation using the two
algorithms and comparisons between numerical and analytic results to
address ADR as a measure of solution accuracy, are reported in Appendix C.

3. Burgers Equation

As noted in Anderson, et al. (1984) Burgers equation is a simple
nonlinear analog of the NS equations. Both have an unsteady term, a
convective term and a viscous term. The most important difference is that
Burgers equation is a scalar equation and the NS equations are a set of
vector equations of the same form. Burgers equation is useful for
evalution of error monitors because it is recognized as an analog to the NS
equations, analytic solutions are available, programming for numerical
solutions using a variety of algorithms is simple enough to be feasible,
and development of the modified equation for a given algorithm is feasible.
The viscous Burgers equation can be written,

ut+ Ex= 0 (B-l)

where,

E = F - xU , F = cu + bu
2

2

If b = 0, the equation is linear. If v = 0, the equation is inviscid. If
b = 0 and u = 0, the equation becomes the familiar wave equation.

4. Modified Equation Analyses

If the PDE is a function of both space and time, the truncation error
associated with an FDE approximation of the PDE is also a function of both
space and time. The FDE is an algebraic expression for the value of the
dependent variable(s) at a point in the grid at a new time level in terms
of the value for the point at the old time level and values at neighboring
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points at either old or new time levels. The points involved in the FDE
are referred to as the finite difference stencil. An expression for the
truncation error of the FDE is obtained by substituting Taylor series
expansions for the dependent variable(s) about one of the points in the
stencil for the values at the other points into the FDE. As noted in the
introduction, this results in an equation of form,

PDE - TE = 0

When this equation is manipulated to eliminate the lowest order time
derivative terms appearing in the truncation error, the resulting equation
is called the modified equation. The modified equation suggests the
spatial effect of the lead or dominant truncation error terms on the
spatial solution.

Because of the complexity, it was impractical to develop modified
equations for the nonlinear form of the viscous Burgers equation in the
time available for the study. Modified equations are thus reported for
the linear form of the viscous Burger's equation, b = 0 in Equation B-1.

4.1 The Modified Equation, MacCormack Algorithm

The MacCormack explicit algorithm, described in Anderson, et al.
(1984), uses forward-time forward-space differencing for a predictor step
and forward-time backward-space differencing for a corrector step. The
values of the dependent variables resulting from the predictor and
corrector steps are treated as temporary values at time n and the value of
the dependent variable at n~l is set equal to the average of the values
resulting from the predictor and corrector steps. It should be noted that
the spatial derivatives in the corrector step are computed using the
temporary values of the dependent variable from the predictor step.

With reference to Equation B-i, the predictor step is,

* n En Enuj - Uj j I -
t + J+1 L 0

or, (B-2)

* t nn

U U n AtE- E nUj Uj Ej+ I  Ej

where u* is a temporary value of "u" at n. The corrector step is,
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** n * *
u -u. E. -EU U• E, j-i =0

at Ax z

-" (B-3)

j = u - - - -z1

where u** is the temporary value of "u" at n resulting from the corrector
step. Averaging the temporary values of "u" resulting from the predictor
and corrector steps, the FDE for the value of "u" at n+1 is obtained.

=nl u n At E? 1 -E n At E* - E*_1) (B-4)uj = j- 2 Ax + i 2 Ux j- 1

Note that E*j and E*j j are computed using the temporary values of "u"
resulting from the predictor step.

Selecting point n,j about which to expand, Taylor series expansions are
needed for un+l, En E', and E'j-1 . When these expansions are

substituted into the FDE, Equation B-4, an equation of form PDE - TE = 0 is
obtained. As reported by Baldwin, et al. (1977), when this equation is
manipulated to eliminate the time derivative terms, the modified equation

it results.

t + cu - Izux+ -g- _ c 2t 2 )Uxx x + ... HOT= 0 (B-5)

where HOT - higher order terms

4.2 The Modified Equation, Beam-Warming Algorithm

From Anderson, et al. (1984), the Beam-Warming algorithm for Equation
B-I can be written,

n+U n n n n ( n+l-u n An (n+1 n
uj uJ + Fj+I- FJ-I +1 j+1 - +l - -1 j-I 1 -i

at 2 ax 2 x (B-6)
2 n+1

xj

where,

2 n+l n+l n+l n+l6 . . - u. + U
2 un+l 6x uj U j+ +J-1
x ( 2 2 u
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The finite difference stencil thus involves points J-i, j, and
j+l at times n and n+1. Selecting point nj about which to
expand, Taylor series expansions are needed for the remaining
points in the stencil.

n+l n At, at,
u. =u. + utAt + utt - + utt t  - + HOT

n n &X2 &X3

Uj+ 1  U j + U x &x + 2xx + xxx 6 + HOT

n n Ax2 Ax3uj_ - u. - u tAx + Ux -- - 6xx - - O
J-i1 j x xx2 +HOT

2 x2

n+1 n tAt2 A-
U Uj + u At + u x + - + U t A x+u -

+Id- t xtt 2, tx xx 2

at3 at2Ax At &X2  Ax3

ttt-6 ttx 2 txx 2 +xxx 6 (B-7)

n+1 Un tAt uat 2  u tAx+u Ax2

j-1 j t x tt tx xx 2

3  t2 t A2 - x3

+ uttt--A-6 ttx 2 + Utxx 2 Uxxx - + HOT

Fn = Fn + F Ax + F AX2  Ax3

j+l j x xx - + Fxx x  - + HOT

1x2 xxx 6

F.=I J x x F - F tx + F - F - - +HOT

Restricting the analysis to the linear form of Equation B-i, the FDE can be
written,

n+ n +1 n n+ nU. - Uc c J ( +1 - uJ+. - u_ 1 + u

At 2 • Ax 2•ax

u n+l n+l n+l )(B-6)
P J+ 1 - 2 u j + U j-1

- (5x)2

Substituting the Taylor expansions from Equation B-7 into Equation B-6, an
equation of form PDE - TE 0 is obtained. This may be written,
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PDR -TE

t 
at2-"u t + cu x - 1jUx + ut -L + Ut At + utt

tt 2 tx C6 (B-8)

+ Utt at -2 - Ut P At + uxx c -2 + HOT = 0

- TB Continued

Note that the TE = 0 (At, &x2 ).

The modified equation is obtained for this algorithm by manipulating
Equation B-8. This manipulation involves differentiating Equation B-8 with
respect to x and/or t and multiplying it by a coefficient such that when it
is added to the original equation, a selected time derivative term is
eliminated. When this is done in a sequential fashion, time derivative
terms up to a selected order are replaced in Equation B-8 by equivalent
space derivative terms. Following Anderson (1984) this is done by
constructing a table in which the equation across the top of the table is
Equation B-8 and the terms listed on the left side are the manipulations
performed on a given line of the table to eliminate a time derivative term.
When the equations on each line of the table are summed together, the
modified equation is the result. Table B-1 shows this manipulation for the
Beam-Warming algorithm applied to the linear viscous Burgers equation.

5. DISCUSSION

With rererence to the modified equation for the MacCormack algorithm,
the lead truncation error term (the term with the lowest order spatial
derivative) involves a third order spatial derivative. This suggests that
the dominant truncation error effect should be dispersive. Implicit in this
conclusion however is the difficult to prove assumption that the lowest
order term is the dominant term. It should be possible to test this
assumption for an algorithm by constructing analytic solutions to a model
equation with a dispersive error like effect (ringing) near a steep gradient
region. This should result in an equation of form,

PDE = SOURCE TERM

as suggested by McDonough (1988). Since the constructed solution represents
a solution to the equation,

FDE = 0

This implies that,

PDE = TE and that TE = SOURCE TERM

It should be possible to directly evalute the derivatives of the TE from
this equation.
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Examination of the modified equation for the linear Burgers equation,
approximated using the MacCormack algorithm, reveals that the lowest order
term is zero when the Courant number is 1. The numerical results by Mayer,
Appendix C, (recall that Mayer solved the nonlinear Burgers equation)
indicate that the exact solution is recovered when the Courant number is
near 1. The algorithm is unstable when the Courant number is greater than
1.

With reference to the modified equation for the Beam-Warming
algorithm, the lead truncation error term involves a second order spatial
derivative. This suggests, somewhat suprisingly, that the dominant
truncation error effect is dissipative and that the magnitude of this term
is a function of the time step. It should be noted, however, that a third
order term does exist. Numerical results by Mayer, Appendix C, show that
when the grid is coarse an oscillation of the solution (a dispersive error
effect) occurs near a steep spatial gradient. This suggests that when the
grid is coarse, the third order term becomes the dominant term near a strong
spatial gradient.

Artificial dissipation as implemented by Forester (1985), and Mayer,
ippendix C, is a viscous like term added to the FDE to control a dispersive
error effect in the solution. This term is typically the product of an
artifical viscosity and a second derivative of a dependent variable. When
artificial dissipation is used, instead of solving,

FDE = 0

the equation being solved is,

FDE = AD

where AD artificial dissipation. This implies that

PDE - TE - AD = 0

Thus AD is in effect a source term added to the PDE. The artificial
viscosity as implemented by Forester and Mayer is proportional to the second
derivative of a dependent variable. Thus, unless a dispersive error is
present in the solution, the artificial viscosity and hence the AD are zero.
Although AD is added to the FDE to control dispersive error, some dispersive
error must be present in the solution to activate the artificial viscosity
model.

The sum of the TE and the AD act as a source term in the PDE being
solved. AD i at least a partial measure of solution accuracy because in
regions of high dispersive error the source term is "large". Thus a
solution with a locally high AD would have a locally high source term. A
solution with a high area normalized value of AD would be expected to be
less accurate than one with a low value of this parameter. Unfortunately,
other error mechanisms may be present. If the algorithm has intrinsic
dissipation, the source term of the PDE could be high while the AD is low.

A second problem is that the relationship between the magnitude of the
source term and the solution accuracy is highly nonlinear, Oran and Boris,
1987. This relationship may also be very problem dependent.
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AD would be expected to be most useful for algorithms where the lead TE
terms are dispersive and less useful for algorithms with intrinsic
dissipation. This hypothesis is supported by the numerical results of
Appendix C. In the numerical results, the relationship between the local
and integrated error and ADR is obviously weaker for the Beam-Warming
algorithm than for the MacCormack algorithm. This is true if the hypothesis
is true because of the intrinsic dissipation of the Beam-Warming algorithm.
It does not appear feasible to establish a relationship between solution
accuracy and AD that is not problem and algorithm dependent.

It should perhaps be noted that while addressing algorithms with
intrinsic dissipation as the primary means of controlling dispersive error
was not a goal of the present study, the Beam-Warming algorithm does have
intrinsic dissipation. It is clear from consideration of the modified
equation for the Beam-Warming algorithm that a truncation error could exist
although the dispersive error is zero (and hence the AD needed to control
it).

6. CONCLUSIONS

Modified equations were developed for the linear viscous Burgers
equation for both the MacCormack explicit and the Beam-Warming implicit
algorithms. It was found that the lead truncation error term with the
MacCormack algorithm is dispersive and that the lead term with the Beam-
Warming algorithm is dissipative. A third order dispersive error term was
also present with the Beam-Warming algorithm. AD is in effect a source term
added to the PDE being solved and for algorithms with high dispersive error
it is thus a qualitative measure of solution accuracy. AD would be less
useful for algorithms with high intrinsic dissipation. It is clear that a
quantitative relationship between AD and solution accuracy would be
algorithm and problem dependent.
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APPENDIX C:
Evaluation of the Artificial Diffusion Ratio through Numerical

Solutions to Burgers Equation

by
DW Mayer

1. SUMMARY

The contract explored a variety of truncation error monitors as guides to
grid selection and solution accuracy. One of these error monitors, the
artificial diffusion ratio (ADR) seemed to provide a simple means of guiding
grid refinement and establishing solution accuracy. The objective of the
present study was to determine if ADR is applicable to other algorithms and
determine how the solution accuracy is related to ADR.

During the course of this study it was found that

o solution accuracy is not simply related to ADR thresholds,

o ADR is useful for defining grid regions that require refinement, and

o ADR is less useful in defining regions of high grid error 'LQ: the
Briley-McDonald algorithm than for the MacCormack explicit algorithm.

I. it is recommended that the usefulness of artificial dissipation for
algorithms with intrinsic smoothing be investigated and demonstrated. The
computer program developed for the present study may be readily adapted for
this purpose. These follow-on studies should include a modified equation
analysis to define the lead truncation error terms for the algorithm and model
equation. An analytic solution could be used to directly evaluate these
terms. A detailed study of these terms relative to the present (or alternate)
definitions of ADR should provide valuable insight and guidance to using ADR
for assessing solution accuracy.

The objective of the work presented in this appendix was to determine if
ADR is applicable to other algorithms and how the solution accuracy is related
to ADR. This appendix presents details on Burgers equation including an
analytic solution, finite difference formulations of the two solution
algorithms, ADR definitions for each algorithm, and results of numerical
solutions compared with ADR levels and measures of solution accuracy. The
final section discusses the major conclusions of this study and suggests
promising avenues for future investigation. The modified equation analysis of
the two algorithms is reported in Appendix B.

2. BURGERS EQUATION

Butgers equation is a simple nonlinear analog of the NS equations; it
contains an unsteady term, a convective term and a viscous term. Burgers
equation is useful for evaluation of error monitors because it is recognized
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as an analog to the NS equations, analytic solutions are available,
programming for numerical solutions using a variety of algorithms is
straightforward, and development of the modified equation for a given
algorithm is feasible.

2.1 Generalized Burgers Equation Formulation

The generalized Burgers equation may be written in a form consistent with
the usual representation of the NS equations as follows:

at + = 0 (C-i)

where,

where

au bu2
U = u, E = F - uP-, F = cu +-- (C-2)

u is the velocity, U is the fluid viscosity, and c and b are free
parameters. Note that if b = 0, the linearized Burgers equation results
and if c = 0 and b = 1, the nonlinear Burgers equation is obtained. If u
= 0 the equation is inviscid and if b = 0 and u = 0 the familiar wave
equation is recovered.

a.
2.2 Analytic Solution

If the free parameters b and c are set to 0.5 and -1, respectively,
the generalized Burgers equation has the stationary solution (Anderson et
al., 1984)

c[ c(x-Xo)]

ua = - i+ tanh 2u] (C-3)

A plot of the analytic solution is shown in Figure C-i for several values
of U. Note that this forms a stationary wave that approximates a
discontinuity (e.g., a shock wave). This analytic solution was therefore
felt to be a good choice for investigations of the error monitor
identified during the contract.

3. SOLUTION ALGORITHMS

The MacCormack explicit and the Briley-McDonald implicit algorithms
were chosen for the present study. The MacCormack explicit algorithm was
selected because the 2D NS code used in the contract work is based on the
MacCormack method. The Briley-McDonald algorithm was selected since it is
equivalent to the popular Beam-Warming method when applied to Burgers
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equation. The numerical results from solution of Burgers equation using
these two algorithms, provides a link between the results of the AFOSR
contract work and extensions to currently popular Navier-Stokes solvers
such as the ARC (Pulliam, 1984) and PARC (Cooper, 1987) series of codes.

The next two sections discuss these algorithms in more detail and
provide the mathematical formulations used in the ID Burgers equation
studies.

3.1 MacCormack Explicit Method

The finite-difference expression for MacCormack's explicit predictor-
corrector method with a "product" smoother is given by (Anderson et al.,
1984)

* U n -At [(E n -nE) n - (C-4)Ui  = i  - ( i+ l - (Sii+1  - SP

i = 1 (iu + U - (Ei - Eil) - (Si - Si_l) (C-5)

where S represents the artificial dissipation flux at a point. For the NS
equations S is defined as

n n n

oS i n E (lUln' + an i) l- n2 -_1( Uin_) (C-6)n +2P + P _ )(i +1 n

. (u*I * IP+l - 2P + P*I *
Si = (IUll + ai) * , (Ui+ 1 -Ui) (C-7)

(Pi+l + 2Pi + Pi1 )

and 0 < c < 0.5

Note that when solving Burgers equation, the pressure, P, is not a
dependent variable and the speed of sound, a, is not a solution parameter.
Therefore, for this study, velocity was used in place of pressure and the
wave speed, c, was used in place of a in the definition of the artificial
dissipation flux.

An additive artificial viscosity is thus defined as

= £ (AX) r U+l - 2u. + ui-iI (C-8)

({1u1i + c )
where r = (u+2 +

(u+ + 2ui + u_
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The Ax is included in the definition of the artificial viscosity so that
S - U 8u/ax and is comparable to the viscous term u au/ax contained in
E. Also note that the sign on the smoothing terms in Equations C-4 and C-
5 have been selected so that they have the same sign as the viscous term
in E. This smoother is triggered by oscillations in a numerical solution
(a third order or dispersive effect). With an appropriate setting for c
the dissipation added by the smoother will damp the third order dispersion
error.

For this study u is < 0 for certain regions of the solution domain
(refer to Figure C-1). This condition results in negative or zero values
for the artificial viscosity computed from Equation C-8 and causes
numerical difficulties. This problem is not normally experienced when
using MacCormack's smoother for the NS equations since pressure should be
greater than zero throughout the flow field. To overcome this difficulty
r was assumed equal to 1 for all conditions. An order of magnitude
analysis of r indicates this assumption is approximately correct if the
solution is shifted far from the origin. For example, if r is evaluated
in a region of the flow where u = 100 then r = 0.25.

3.2 Briley-McDonald Implicit Method

The Briley-McDonald method is an implicit algorithm with the following
finite-difference expression for the generalized Burgers equation

*0 (Anderson et al., 1984)

n+l n n n
ui -ui Fi+ i-1

at 2 &x

A n n+1 n An ( n+l n
+i 1  ui+ -Ui+l) - Ax (ui-I - Ui)

+ 2nx

n+1 - 2un+1 n+l
i+1 i i- (C-9)

where

A 2 8F - c + bu (C-10)

This method is equivalent to the Beam-Warming method when applied to the
Burgers equation. Smoothing was added to this algorithm by replacing U
with V + Va where Pa is defined by Equation C-8. To facilitate the
programming of the smoother term, lagged values of u were used in the
computation of Ma -
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4. ERROR MONITOR DEFINITION

The contract results indicated that the magnitude of the smoothing term
for the MacCormack method may be indicative of the error magnitude. This
may be true since

o the lead truncation error term involves a third order spatial
derivative and is dispersive in nature (Appendix B), and

o the MacCormack smoother adds sufficient artificial dissipation to
damp the dispersive effect (i.e., ringing or oscillatory solutions).

Therefore, the magnitude of the smoothing term may be of the same order of
magnitude as the lead truncation error term. For the contract effort the
error monitor was defined as the ratio of the smoothing flux to the total
flux through computational cell faces (Forester and Tjonneland, 1988).
This error measure was called the artificial diffusion ratio, ADR. The
following sections provide mathematical details on computing ADR for the
two solution algorithms chosen for this study.

4.1 ADR for the MacCormack Method

The following definition of the artificial diffusion ratio, ADR, was
used during this study and is consistent with the definition used in the.i AFOSR contract report.

I(Sjl - S )I
ADR = (C-lI)

(Ei+1  + I(Si 1 - S)I

Note that the magnitude of the added artificial smoothing term is compared
with the 8E/ax term such that ADR must range between 0 and 1. This
definition is for the predictor step. A similar definition may be
expressed for the corrector step, but studies have shown that both
definitions have essentially the same characteristics. ADR based on the
predictor step was used for the AFOSR contract work.

4.2 ADR for the Briley-McDonald Method

The definition of ADR used for the Briley-McDonald method is
mathematically more complex than the definition used for MacCormack's
method. It is comparable from the standpoint that the magnitude of the
artificial smoothing term is compared with the aE/ax term. Defining
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Fn Fn

SF i+l i-
•c 2 &x

An  . n+l n n ( n+l nA+1 (U.~ - Ui ) - A-1 (ui- 1 - ui-1 )

+ 26x

n+1 - n+l n+lui1+1 - 2ui + ui 1

Fv =j 2 (C-13)(Ax) 2

n+l - n+1 n+l| Ui~~l - z i  +u_

Ss =a 2 (C-14)

then

ADR = IF (C-15)
IF c Fv + IFS1

This definition is equivalent to the definition of ADR used for the
MacCormack method.

0@ 5. RESULTS

The methods and the definitions of ADR discussed in the previous
sections were programmed into a Fortran code that can be rapidly executed
on a Digital Equipment Corporation VAX computer. Graphics files were
generated and procedures for automatically generating plots were developed.
This level of automation allowed rapid investigation of ADR for the two
methods.

The first step was to determine grid spacing and fluid properties that
would result in a noisy solution (and thereby trigger the smoother). To
avoid stability issues, the following stability criteria suggested by
Tannehill (Anderson et al., 1984) was satisfied for all numerical studies
presented:

at Ax) (C-16)

The solution for three values of viscosity (u = 1., 0.1, and 0.01) was
computed with the MacCormack method. Time and space steps of 0.1 and 0.5,
respectively, were used for these calculations. The numerical and analytic
solution results are shown in Figure C-1. The largest value of viscosity
did not result in any noise. The intermediate viscosity value resulted in
negligible noise. The smallest value of viscosity triggered appreciable
noise.
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The solution was next recomputed with the Briley-McDonald method to
check that the smallest value of viscosity would trigger noise with this
method. This result is shown in Figure C-2. Since the smallest value of
viscosity triggered noise for both methods this value was used for the
remainder of the study.

A simple grid refinement study was next performed for both algorithms.
The cases were run first with the smoother turned off and then with the
smoother turned on. For the cases with smoothing the smoothing
coefficient, e, was fixed at a value of 0.25. The grid spacing was
started at &x = 2. and was reduced by factors of 2 until a grid spacing of
Ax = 0.03125 was reached. Thus, the solution was computed on seven grid
levels. For brevity detailed results will only be shown for grid spacings
of &x - 1., 0.25, and 0.0625 (i.e., representative coarse, medium, and
fine grid results). To avoid stability problems it was necessary to reduce
the step size for two of the grids (4x = 0.0625 and 0.03125). For
consistency all the solutions were run to r = 10.

During these calculations several measures of solution error were
collected. The objective was to look at these error measures relative to
ADR and determine if a correlation between error and ADR exists. The
values collected were the %error, ADR, Eerror, EADR, peak error, and peak
ADR defined as

- u- u
%7. Zerror = 100 u a (17)Umax -Umin

where ua, umax, and Umin are based on the analytic solution.

Xmax

Eerror = J lu - uaI dx (18)

min
x

J max
ZADR = ADR dx (19)

Xmin

the peak error and peak ADR are simply the maximum values for the absolute
error and ADR computed for a given grid density.

The details of these results for each algorithm are summarized in the
next two sections.

5.1 MacCormack Explicit Results
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The HacCormack explicit results, without smoothing, are shown in
Figures C-3 through C-5. These figures show the results in the sequence of
coarse, medium and fine grids, respectively. The top plot in each figure
compares the analytic and numerical solutions for the velocity. The middle
plot shows the %error. The bottom plot shows the ADR values which are
identically zero when smoothing is not used. As expected the range and
extent of the error is minimized with improved grid density.

The results with the smoother turned on are shown in Figures C-6
through C-8 (in the same sequence as Figures C-3 through C-5). The extent
of the high error region is reduced with improved grid density and the ADR
values exhibit a similar behavior. The range of the error seems to be
nearly the same for the coarse and medium grids, and increases for the fine
grid. The range of the ADR values increases with grid refinement.

Figure C-9 shows the peak error (with and without smoothing) and the
peak ADR (with smoothing only) as a function of grid spacing for all the
grids investigated. Figure C-10 shows the Eerror and EADR as a function
of grid spacing. Two features may be noted from these results.

1) There is a relationship between the peak error and peak ADR, but it
is not a simple one-to-one correlation (compare the middle and
bottom plots in Figure C-9). This means the threshold idea proposed
during the contract is not supported by these results. That is, the
magnitude of ADR is not directly related to the magnitude of the
error in the numerical solution.

2) It is apparent that the use of smoothing is beneficial (compare the
top and middle plots in Figures C-9 and C-10). The accuracy
(whether measured as peak error or Eerror) is significantly
improved for coarse grids. Conversely, the use of the smoother does
not significantly impair the result for fine grids. The low error
observed for the coarsest grid (bx = 2), without smoothing, is
probably due to a Courant number and diffusion number effect. For
these conditions the truncation error is apparently negligible and a
nearly exact solution is recovered. This should be checked by
performing a modified equation analysis for the nonlinear Burgers
equation.

5.2 Briley-McDonald Implicit Results

The Briley-McDonald implicit results, without smoothing, are shown in
Figures C-1i through C-13. These figures show the results in the sequence
of coarse, medium and fine grids, respectively. The top plot in each
figure compares the analytic and numerical solutions for the velocity. The
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middle plot shows the %error. The bottom plot shows the ADR values which
are identically zero when smoothing is not used. As expected the range and
extent of the error is minimized with improved grid density. This trend is
consistent with the trend noted for the MacCormack algorithm.

The results with the smoother turned on are shown in Figures C-14
through C-16 (in the same sequence as Figures C-11 through C-13). The
extent of the high error region is reduced with improved grid density and
the ADR values exhibit a similar behavior. The results differ somewhat
from the MacCormack results since the extent of the high ADR regions are
greater for the Briley-McDonald method. The range of the error increases
with grid refinement (differing from the trend noted for the MacCormack
method where the coarse and medium grid results have nearly the same range
of error). The range of the ADR values is nearly the same for the coarse
and medium grids, and increases for the fine grid (differing from the trend
noted for the MacCormack method where the range of ADR values increased
with grid refinement).

Figure C-17 shows the peak error (with and without smoothing) and the
peak ADR (with smoothing only) as a function of grid spacing for all the
grids investigated. Figure C-18 shows the Zerror and EADR as a function
of grid spacing. The following features may be noted from these results:

1) A simple relationship between the peak error and peak ADR does not
exist (compare the middle and bottom plots in Figure C-17). That

0O is, the magnitude of ADR is not directly related to the magnitude of
the error in the numerical solution. Therefore, an ADR threshold is
not supported for either the MacCormack or Briley-McDonald method.

2) A weaker relationship exists between the peak ADR and the peak error
for the Briley-McDonald algorithm than is observed for the
MacCormack algorithm (compare the middle and bottom plots of Figures
C-9 and C-17). Similarly, the relationship is weaker between the
EADR and Eerror (compare the middle and bottom plots of Figures C-
10 and C-18).

3) It is apparent that the use of smoothing is beneficial (compare the
top and middle plots in Figure C-17 and Figure C-18). The accuracy
(whether measured as peak error or Eerror) is significantly
improved for coarse grids. Conversely, the use of the smoother does
not significantly impair the result for fine grids. The low error
observed for the coarsest grid (x = 2), without smoothing, is
probably due to a Courant number and diffusion number effect. For
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these conditions the truncation error is apparently negligible and a
nearly exact solution is recovered. This should be checked by
performing a modified equation analysis for the nonlinear Burgers
equation.

6. CONCLUSIONS AND RECOMMENDATIONS

In summary, the following conclusions have been drawn from the 1-D
Burgers equation results:

o The ADR threshold as a measure of solution accuracy has not been
established. There does exist a correlation between ADR and solution
accuracy, but the correlation is more complex than a simple one-to-
one relationship. Achieving a given level of ADR does not guarantee
a given accuracy level.

o The use of ADR to pinpoint grid problems has been demonstrated.
Regions of the flow where the grid is too coarse to accurately
capture gradients results in noise or ringing in the solution. This
noise is dispersive in nature, activates MacCormack type smoothers,
and results in correspondingly high values of ADR. Therefore,
regions of the flow that have relatively high levels of ADR are
candidates for further grid refinement.

o ADR does not pinpoint regions of grid error as well for the Briley-
McDonald method. The regions of high ADR cover a greater extent than
the regions of relatively high solution error. This means that ADR
for the Briley-McDonald method exaggerates the extent of regions that
require grid refinement.

This investigation could be readily extended to other algorithms using
techniques similar to those describe in this coordination sheet.

The usefulness of ADR for solution algorithms that use intrinsic
smoothing (i.e., not added explicitly) has not been demonstrated. The
computer program written for the present study may be readily adapted to
explore the use of ADR for these and other algorithms.

The results of the modified equation analysis of the MacCormack
explicit and Briley-McDonald implicit algorithm (Appendix B) makes it
feasible to directly evaluate the lead truncation error terms for an
analytic solution. A detailed study of these terms relative to the present
(or alternate) definitions of ADR may provide valuable insight and guidance
to using ADR for assessing accuracy.
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LMocCormock explicit
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UocCormock explicit
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I LocCormack explicit
Ot - 0.050. OX- 0.063

Mu = 0.310, Epsilon = C
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MocCormnock explicit
Mu =0.010. Epsilon - 0.00
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Briley-Mc~onold implicit
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Briley-McDonald implicit
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Briley-McDonald implicit
Ot - 0.050, DX - 0.063
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Fgure C- 13. Briley-Mc~onald Implicit Results: Fine Grid, No Smoothing

C-23



Briley-McDonald implicit
Ot - 0.100, DX - 1.000

Mu = 0.010, Epsilon =0.25
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Figure C-14. Briley-Mc~onald Implicit Results: Coarse Gid, With Smoothing
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Briley-McDonald implicit
Ot - 0.100, OX - 0.250

Mu = 0.010, Epsilon = 0.25
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Fgure C- 15. Briley-McDonald Implicit Results: Medium Grid, With Smoothing
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Briley-Mc~onald implicit
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Figure C- 16. Briley-MCDonaid ImpliCit Results: Fine Grid, With Smoothing
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B iley-McDonald implicit
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APPENDIX D:
Source Code Listing for Burgers Equation Study

PROGRAM BURGER
C** Author: Dave Mayer
C** Boeing Advanced Systems

C** PO Box 3703, MIS 33-14
C** Seattle, WA 98124

C** (206) 241-4403

INCLUDE 'BURGER. INC/LIST'
IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (MAXN=5O-+1, MAXI=500+1)
COMMON /IOUNITS/

$ LUE, LUI, LUO, LUP
COMMON /VAR/

$ TITLE, ISCHEME
$ , X(MAXI), XMIN, DX, NDX, IMAX, ISKIP, XO
$ , T(MAXN), THIN, DT, NDT, NMAX, NSKIP
$ ,VIS, EPSILON
$ ,ADRI(MAXI,MAXN), ADR2(MAXI,MAXN), ADR3(MAXI,MAXN)
$ ,F(MAXI), A(MAXI)
$ ,PHI(MAXI,MAXN), PHIB(MAXI,MAXN)
$ ,B, C, PHIA(MAXI,MAXN)
$ ,PHIl, PHISi, PHIS2
COMMON /STATS/

$ AMERR(MAXN), SIGMA(MAXN), RMSERR(MAXN)
$ , SUMPHI(MAXN), SUMERR(MAXN)
$ , SUMADR1(MAXN), SUMADR2(MAXN), SUMADR3(MAXN)
$ , PEAKERR(MAXN)
$ , PEAKADR1(MAXN), PEAKADR2(MAXN), PEAKADR3(MAXN)

CHARACTER*60 TITLE

CALL 10
100 CALL INPUT

CALL INIT
CALL ANALYTIC
IF(ISCHEME .EQ. 1) THEN

C** Solve using MacCormack explicit procedure
CALL MAC

ELSE IF(ISCHEME .EQ. 2) THEN
C* Solve using the Briley-McDonald implicit procedure

CALL BRILEY
ENDIF
CALL STATS
CALL EGG
CALL EGGS
CALL LP
GO TO 100
END
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SUBROUTINE ANALYTIC

C** Compute the analytic solution.

INCLUDE 'BURGER.INC'

IF(B .EQ. -1. .AND. C .EO. 0.5) THEN
C** Compute analytic solution

PI = ACOS( -1. )
DO 300 N=1,NMAX,NSKIP

DO 200 I=1,IMAX,ISKIP
PHIA(I,N) -C / B

$ * (1. + TANH( C * (X(I) - XO ) / (2. * VIS) ) )
200 CONTINUE
300 CONTINUE

ENDIF
RETURN
END
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SUBROUTINE BRILEY
C** Solve using the Briley-McDonald implicit solution procedure

INCLUDE 'BURGER.INC'
DIMENSION AA(HAXI), BB(MAXI), CC(MAXI), DD(NAXI)
DO 400 N=1,NMAX-1

C** Load coefficients for boundary at I=1 (Dirichlet condition)
DD(l) = 1.
AA(1) = 0.
CC(1) - PHISi

C** Compute A and F
DO 100 I=1,IMAX

A(I) = C +i B * PHI(I,N)
F(I) = C * PHI(I,N) + B * PHI(I,N)**2 /2.

100 CONTINUE
C* Load coefficients for interior points

CN = DT / DX
DO 200 I=2,IMAX-1

C** Note that the smoothing viscobity is based on lagged values
DN - ( VIS + VISA(I,N) ) * DT / DX**2
BB(I) - - CN / 2. * A(I-1) - DN
DD(I) = 1. + 2. * DN
AA(I) = CN /2. * A(I+l) - DN
CC(I) - ( -CN / 2. * A(I-1) )*PHI(I-1,N)

$ + PHI(I,N)
$ + ( CN / 2. *A(I+l) )*PHI(I+1,N)
$ - CN / 2. *(F(I+1) -F(I-l))

200 CONTINUE
C** Load coefficients for boundary at I=IMAX (Dirichlet condition)

BB(IMAX) -0.
DD(IMAX) -1.
CC(IMAX) -PHIS2
CALL TRIDIAG(1,IMAX,BB,DD,AA,CC)
DO 300 I=1,IMAX

PHI(I,N+l) = CC(I)
300 CONTINUE

DO 400 I=2,IMAX-1
C** Compute ADR

FLUX = 0.5 *(F(I+l) -F(I-1)

$ + A(I+1) * (PHI(I+1,N+l) - PHI(I+1,N))
b$ - A(I-1) * (PHI(I-1,N+1) - PHI(I-1,N)))

FLUXV = VIS
$ * ( PHI(I+1,N+l) -2.*PHI(I,N+1) + PHI(I-1,N+l) ) / DX

FLUXS =VISA(I,N)
$ *( PHI(I+1,N.1) -2.*PHI(I,N+1) + PHI(I-1,N+1) ) / DX

ADR1(I,N+l) =ABS( FLUXS )
$ /( ABS( FLUX FLUXV )+ ABS( FLUXS )+ l.E-24)

ADR2(I,N+l) =ABS( FLUXS )
$ /( ABS( FLUXC )+ ABS( FLUXV ) + ABS( FLUXS)
$ + 1.E-24 )

ADR3(I,N+l) =ABS( FLUXS)
$ /(ABS( FLUXC )+ ABS( FLUXS ) + l.E-24)

400 CONTINUE
RETURN
END
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SUBROUTINE EGG
C** Generate plot file for the Boeing Engineering Graphics

*C** Generator program.

INCLUDE 'BURGER.INC'

WRITE( LUE,8000)
*8000 FORMAT('(F5.O,7E11.O)')

WRITE(LUE,8005) TITLE, DT, DX
$ , VIS, EPSILON

* 8005 FORMAT('*DUPT'/
$ 1$1A60/
$ '$Dt ='F6.3', DX .='F6.3/
$ '$Mu =tF6.3', Epsilon ='F6.2)
DO 200 N=1,NMAX,NSKIP
K =K + 1
VRITE(LUE,8010) DX, SUMERR(N), SUMADR1(N)

$ , PEAKERR(N), PEAKADR1(N)
8010 FORMAT('*PAP DX11PE11.3/

$ '*PARj SUMERR'E11.3/
$ '*PAR~ SUMADR1'E11.3/
$ '*PAR{ PEAKERR'E11.3/
$ '*PAR PEAKADR1'E11.3)

WRITE(LUE,8020) K
8020 FORMAT('RUN'12)

'WRITE(LUE,8030)
8030 FORMAT(T5' I'T9'X'T20'Ua'T31 'U'T42'XError'

$ T53'ADR1'T641ADR2'T751ADR3')
10 DO 100 I=l,IMAX,ISKIP

PHIMIN = PHI11
PHIMAX = PHIS2
PCTERR = 100. *(PHI(I,N) - PHIA(I,N) )/(PHIMAX -PHIMIN)

VRITE(LUE,8040) I, X(I), PHIA(I,N), PHI(I,N)
$ , PCTERR, ADRI(I,N), ADR2(I,N), ADR3(I,N)

8040 FORMAT(I5, PE11 .3)
100 CONTINUE

WRITE(LUE,8050)
8050 FORMAT('*EOF')
200 CONTINUE

RETURN
END
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SUBROUTINE EGGS
C** Generate plot file of statistical error measures
C* for use with the Boeing Engineering Graphics Generator program.

INCLUDE 'BURGER. INC'

LU =9

K K + 1
IF( K .EQ. 1 ) THEN
WRITE(LU,8000)

8000 FORMAT('(lOEl1.O)')
WRITE(LU,8010) TITLE, VIS, EPSILON

8010 FORMAT( '$'A60/
$ '$Mu ='F6.3', Epsilon -'F6.2)

IJRITE(LU, 8020)
8020 FORMAT('RUN 1')

IRITE(LU,8030)
8030 FORMAT(T4'DX'T15'SUMPHI'T26'SUMERRI

$ T37' SUMADRl'T48' SUMADR2'T59' SUMADR3I
$ T701PEAKERR'
$ T81'PEAKADR1'T91'PEAKADR2'T102'PEAKADR3')
ENDIF
WRITE(LU,8040) DX, SUMPHI(NMAX), SUMERR(NMAX)

$ , SUMADR1(NMAX), SUMADR2(NMAX), SUMADR3(NMAX)
$ , PEAKERR(NMAX)
$ , PEAKADR1(NMAX), PEAKADR2(NMAX), PEAKADR3(NMAX)

8040 FORMAT( 1PlOE1 1.3)
RETURN
END
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SUBROUTINE INIT
C** Initialize variables

INCLUDE 'BURGER.INC'

C** SeL indices
NMAX = NDT + I
IMAX = NDX + 1

C** Set time and space grid coordinates
T(1) = TMIN
DO 100 N=2,NMAX
T(N) = T(N-1) + DT

100 CONTINUE
X(1) = XMIN
DO 200 I=2,IMAX

X(I) = X(I-1) + DX
200 CONTINUE

C** Set initial conditions
DO 300 I=1,IMAX

PHI(I,1) = -C / B
$(. + TANH( C *(X(I) XO )/(2.* VIS)))

300 CONTINUE

C** Set boundary conditions
PHIS1 = PHI(1,1)
PHIS2 = PHI(IMAX,I)

RETURN
END

-D-6-



SUBROUTINE INPUT

C** Read input data

INCLUDE'BURGER.INC'

C** Input values for
C** Title,
C** Ischeme: 1 -- > MacCormack explicit
C** 2 -- > Briley-MacDonald implicit
C** Minimum value for X, Delta X, Number of Delta X, Output skip factor
C** Minimum value for t, Delta t, Number of Delta t, Output skip factor
C** Output skip factor
C** Viscosity, Artificial viscosity coefficient
C** B, C --> The coefficients in the generalized Burger's eq.
C** Ut + (C + B * U) * Ux = VIS * Uxx

READ(LUI,5000,END=100) TITLE
5000 FORMAT(A60)

READ(LUI,*) ISCHEME
READ(LUI,*) XMIN, DX, NDX, ISKIP

XMAX = XMIN + NDX * DX
XO = (XMAX + XMIN) I 2.

READ(LUI,*) TMIN, DT, NDT, NSKIP
TMAX = TMIN + NDT * DT

READ(LUI,*) VIS, EPSILON
READ(LUI,*) B, C
RETURN

100 STOP 'End of input data detected'
END
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SUBROUTINE 10
C** Initialize logical units and files for Input/Output

INCLUDE 'BURGER. INC'

LUI -5
C OPEN(UNIT=LUI, FILE=' BURGER.DAT', STATUS=' UNKNOWN')

LUO -6
C OPEN(UNIT=LUO, FILE='BTJRGER. OUT', STATUS=' UNKNOWN')

LUP -7
C OPEN(TINIT=Lt1P, FILE=' BURGER. PLT', STATUS=' UNKNOWN')

LUE -8
C OPEN(UNIT=LUE, FILE=' BURGER.GGP', STATUS=' UNKNOWN')

RETURN
END
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SUBROUTINE LP

C*~* Generate lineprinter output

INCLUDE 'BURGER. INC'

DO 200 N=1,NMAX,NSKIP
IRITE(LUO, 6000) TITLE

6000 FORMAT('11/
$ ' 'A60)

WRITE(LUO,6010) T(N), DT, DX, VIS, EPSILON
6010 FORMAT(T5't ='1PE11.3', Dt ='E11.3', DX ='E11.3

$ 1, Mu ='Ell.3', Epsilon ='E11.3)
VRITE(LUO,6020)

6020 FORMAT(T5' I'T9'X'T20'Ua'T31'U'T42'%Error'
$ T53'ADR1'T64'ADR2'T75'ADR3')

DO 100 I=1,IMAX,ISKIP
PHIHIN = PHISi
PHIMAX = PHIS2
PCTERR = 100. *(PHI(I,N) - PHIA(I,N) )/(PHIMAX -PHIMIN)

WRITE(LUO,6030) I, X(I), PHIA(I,N), PHI(I,N), PCTERR
$ , ADR1(I,N), ADR2(I,N), ADR3(I,N)

6030 FORMAT(15,1P7E11.3)
100 CONTINUE

WRITE(LUO,6040) AMERR(N), SIGMA(N), RMSERR(N)
$ , SUMERR(N), SUMADRI(N)
$ , PEAK.ERR(N), PEAKADR1(N)

6040 FORMAT(T5'Arithuetic mean error ='1PE11.3
$ ', Standard deviation ='El1.3', RMS error ='Ell.3/
$ T5'Integrated ABS(error) ='E11.3
$ ', Integrated ADRI ='E11.3/
$ T5'Peak ABS(error) ='El1.3
$ ', Peak ADRi ='Ell.3)

200 CONTINUE
WRITE(6, 6050)

6050 FORMAT('1')
RETURN
END
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SUBROUTINE MAC
C** Solve using the MacCormack explicit method

INCLUDE 'BURGER.INC'

DO 600 N=1,NMAX-1
C** First check stability criteria

DO 100 I=1,IMAX
A(I) = C + B * PHI(I,N)

CRITERIA - DX**2 / ( ABS(A(I)) * DX + 2. * VIS )
IF ( DT .GT. CRITERIA ) THEN

C** Write a warning message and halt execution
WRITE(LUO,6000) DT, CRITERIA, N, I, PHI(I,N)

6000 FORMAT(' Dt exceeds stability criteria'/
$ ' Dt ='IPE11.3', criteria ='Ell.3
$ ', N ='13', I ='13', U ='Eli.3)

STOP ' Program execution stopped'
ENDIF

100 CONTINUE

C** Predictor step
DO 200 I=1,IMAX

F(I) = C * PHI(I,N) + B * PHI(I,N)**2 / 2.
200 CONTINUE
C** Set boundary condition at I = 1 (Dirichlet condition)

PHIB(1,N+1) = PHI~1

DO 300 I=2,IMAX-1
C** Solve interior points

FLUXC = F(I+l) - F(I)
FLUXV = VIS * (PHI(I+1,N) - PHI(I,N) ) / DX

$ - VIS * (PHI(I,N) - PHI(I-1,N) ) / DX
FLUXS = VISA(I+1,N) * (PHI(I+I,N) - PHI(I,N) ) / DX

$ - VISA(I,N) * (PHI(I,N) - PHI(I-1,N) ) / DX
PHIB(I,N+l) = PHI(I,N)

$ DT /DX *(FLUXC -FLUXV - FLUXS)
ADR1(I,N+I) = ABS ( FLUXS )

$ / ( ABS( FLUXC - FLUXV ) + ABS( FLUXS ) 1 1.E-24 )
ADR2(I,N+) = ABS( FLUXS )

$ / ( ABS( FLUXC ) + ABS( FLUXV ) + ABS( FLUXS )
$ + 1.E-24 )

ADR3(I,N+l) = ABS ( FLUXS )
$ / ( ABS( FLUXC ) + ABS( FLUXS ) + 1.E-24 )

300 CONTINUE
C** Set boundary condition at I IMAX (Dirchlet condition)

PHIB(IMAX,N+l) = PHIS2

C** Corrector step
DO 400 I=1,IMAX

F(I) - C * PHIB(I,N+) + B * PHIB(I,N+1)**2 / 2.
400 CONTINUE
C** Set boundary condition at I = 1 (Dirichlet condition)

PHI(1,N+) - PHIS1
DO 500 I=2,IMAX-1

C** Solve interior points
FLUXC = F(I) - F(I-1)
FLUXV - VIS * (PHIB(I+1,N+I) - PHIB(I,N+1) ) / DX
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$-VIS * ( PHIB(I,N+1) -PHIB(I-1,N+1) ) / DX
FLUXS -VISB(I,N+1) * ( PHIB(I+1,N+1) - PFIIB(I,N+l) ) / DX

$ - VISB(I-1,N+1) * ( PHIB(I,N+1) - PHIB(I-1,N+l) ) / DX
PHI(I,N+l) 0.5 * ( PHI(I,N) + PHIB(I,N+1)

$ -DT / DX * ( FLUX - FL.UXV - FLUXS )
C ADR3(I,N4-) =ABS ( FLUXS)
C $ /(ABS( P'LUXC - FLIJXV )+ ABS( FLUXS )+ 1.E-24)
500 CONTINUE
C** Set boundary condition at I =IMAX (Dirchiet condition)

PHI(IMAX,N+l) =PHIS2

600 CONTINUE
RETURN
END
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SUBROUTINE STATS
C**~ Compute statistical error measures

INCLUDE 'BURGER. INC'
DIMENSION ERROR(MAXI), TMP1(MAXI), TMP2(MAXI)

DO 400 N=1,NMAX,NSKIP
C* Compute arithmetic mean and RMS error

SUM1 0.
SUM2 -0.
DO 100 I=1,IMAX

ERROR(I) = PHI(I,N) - PHIA(I,N)
SUMi = SUM1 + ERROR(I)
SUM2 = SUM2 + ERROR(I)**2

100 CONTINUE
AMERR(N) =SUMi / IMAX
RHSERR(N) =SORT( SUM2 )/IMAX

C* Compute variance and standard deviation of the error
SUM3 -0.
DO 200 I=1,IMAX

SUM3 = SUM3 + ( ERROR(I) - AMERR(N) )**2
200 CONTINUE

VAR = SUM3 / IMAX
SIGMA(N) = SORT( VAR)

C* Compute the integrals of the absolute error and ADR
C** Compute the peak values of absolute error and ADR

PEAKERR(N) =0.

PEAKADR1(N) =0.

PEAKADR2(N) =0.

PEAKADR3(N) =0.

DO 300 I=1,IMAX
ERROR(I) =ABS( ERROR(I))
TMP1(I) =ABS( P111(I,1))
PEAKERR(N) -MAX( ERROR(I), PEAKERR(N))
PEAKADR1(N) =MAX( ADRl(I,N), PEAKADR1(N) )
PEAKADR2(N) =MAX( ADR2(I,N), PEAKADR2(N) )
PEAKADR3(N) =MAX( ADR3(I,N), PEAKADR3(N) )

300 CONTINUE
CALL TRAPZ(ERROR(1), IMAX, DX, SUMERR(N))
CALL TRAPZ(TMP1(1), IMAX, DX, SUMPHI(N))
CALL TRAPZ(ADR1(1,N), IMAX, DX, SUMADR1(N))
CALL TRAPZ(ADR2(1,N), IMAX, DX, SUMADR2(N))
CALL TRAPZ(ADR3(1,N), IMAX, DX, SUMADR3(N))

400 CONTINUE
RETURN
END
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SUBROUTINE TRAPZ(F, IMAX, DX, SUM)
C** Perform trapezoidal rule integration of a function defined
C** by a table of equispaced values.

C** Parameters:
C** F Array of values of the function
C** IMAX Number of values
C** DX Uniform spacing between values
C** SUM Estimate of the integral

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION F(IMAX)

SUM = 0.
DO 100 I=1,IMAX-l

SUM = SUM + DX/ 2. * (F(I) + F(I+I) )
100 CONTINUE

RETURN
END
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SUBROUTINE TRIDIAG(IL,IU,B,D,A,C)
C** Tri-diagonal matrix solver (using the Thomas algorithm)

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(IU-IL+I), B(IU-IL+I), C(IU-IL+1), D(IU-IL+l)

C** Reference:
C** Anderson, DA, JC Tannehill, and RH Pletcher. "Computaional
C** Fluid Mechanics and Heat Transfer." McGraw-Hill Book Company,
C** 1984. pp. 549-550.

C** IL - subscript of first equation
C** IU - subscript of last equation
C** B - coefficient behind (to left of) diagonal
C** D - coefficient on diagonal
C** A - coefficient ahead (to right of) diagonal
C** C . element of constant vector (right hand side)

C** Establish upper triangular matrix
LP = IL + 1
DO 100 I=LPIU

R = B(I) / D(I-1)
D(I) = D(I) - R * A(I-1)
C(I) = C(I) - R * C(I-1)

100 CONTINUE

C** Back substitution
C(IU) - C(IU) / D(IU)

AO DO 200 I=LPIU
J = IU - I + IL
C(J) ( C(J) - A(J) * C(J+l) ) / D(J)

200 CONTINUE

C** Solution has now been stored in C
RETURN
END
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FUNCTION VISA(I,N)
C** Compute artificial viscosity due to fourth order smoothing

INCLUDE 'BURGER. INC'

IF( I -EQ. 1 ) THEN
C** Use first order forward difference

PIMi = PHI(I,N)
PI = PHI(I+l,N)
PIP1 = PHI(I+2,N)

ELSE IF( I .GT. 1 .AND. I .LT. IMAX ) THEN
C* Use second order centered difference

PIMi - PHI(I-1,N)
PI = PHI(I,N)
PIP1 = PHI(I+1,N)

ELSE IF( I .EQ. IMAX ) THEN
C* Use first order backward difference

PIM1 = PHI(I-2,N)
PI = PHI(I-.1,N)
PIPi = PHI(I,N)

ENDIF
R 1.

C R =(ABS( PHI(I,N) + ~ C )/(PIPi + 2. *PI + PIMI)
VISA =EPSILON *DX *R *ABS( PIPi -2. *PI + PIM1
RETURN
END
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FUNCTION VISB(I,N)
C** Compute artificial viscosity due to fourth order smoothing

INCLUDE 'BURGER. INC'

IF( I .EQ. 1 ) THEN
C* Use first order forward difference

P1141 - PHIB(I,N)
PI - PHIB(I+1,N)
PIP1 PHIB(I.2,N)

ELSE IF( I .GT. 1 .AND. I .LT. IMAX ) THEN
C* Use second order centered difference

P1141 = PHIB(I-1,N)
PI = PHIB(I,N)
PIP1 = PHIB(.E+1,N)

ELSE IF( I .EQ. IMAX ) THEN
C* Use first order backward difference

P1141 - PHIB(I-2,N)
PI - PHIB(I-1,N)
PIPi = PHIB(I,N)

ENDIF
R -1.

C R =(ABS( PHIB(I,N) )+ C )/(PIPi + 2. *PI + PI1
VISB EPSILON *DX*R * ABS( PIPi -2. *PI + PI11
RETURN
END
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